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Abstract

The process of building an open source library of simulated field desorption

maps for differently oriented synthetic tips of the face-centered cubic (FCC),

body-centered cubic (BCC), and hexagonal-close-packed (HCP) crystal struc-

tures using the open source software TAPSim is reported on. Specifically, the

field evaporation of a total set of 4× 101 single-crystalline tips was simulated.

Their lattices were oriented randomly to sample economically the fundamental

zone (FZ) of crystal orientations. Such data is intended to facilitate the inter-

pretation of low density zone lines and poles that are observed on detector hit

maps during Atom Probe Tomography (APT) experiments.

The datasets and corresponding tools have been made publicly available to the

APT community in an effort to provide better access to simulated atom probe

datasets. In addition, a computational performance analysis was conducted

from which recommendations are made as to which key tasks should be opti-

mized in the future to improve the parallel efficiency of TAPSim .
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0.1. Performance analyses

Benchmarking library construction. To best serve the interests of different read-

erships, the following section is split into two parts. The first is primarily ad-

dressed to APT experimentalists. Therein, the elapsed time results are delivered

to answer how long the TAPSim simulations took. The second part is addressed5

primarily to developers of APT simulation software. It focuses on how the in-

dividual computing tasks contribute to the elapsed time and details a profiling

of parallel performance. Based on these findings, a set of practical recommen-

dations is concluded which are of interest for practitioners and developers.

Table 1 summarizes measured elapsed time results from the 404 tips library10

study. Individual simulations took between 34 h and 55 h. Differences in the

workstation floating point performance, in combination with the non-exclusive

execution protocol used within the daily research environment, caused these

fluctuations. The net simulated evaporation rates in atoms per minute are in

reasonable agreement with those reported by Oberdorfer et al. (Oberdorfer,15

2014; Oberdorfer et al., 2013) (/ 300min−1) and Jägle et al. (Jägle et al.,

2014). However, care should be exercised when comparing the performance

reported in this study to that found in the literature as no specific details about

the number of threads or workstations used in these other studies were reported.

20

Given that the clarity of the simulated detector hit maps improves with in-

creasing tip radii and that the simulated tips are still at least one, if not two,

orders of magnitude smaller in volume than those typically measured in APT

experiments, the elapsed timings for larger tips is of practical interest. Such

information was accessible in the second study, where tips with successively25

larger half-sphere radii were simulated. These simulations were executed with

the same level of parallelism (“–threads=4”) on workstation 16 (which was ex-

clusively working on this job). Despite such equal execution conditions, Fig.

1 shows a reduction in evaporation rate with increasingly larger defined tip

volume. One reason for this is the higher cost for performing the trajectory30
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Table 1: Performance analysis of the simulations showing the key mesh properties: the number

of atoms (Nat), support grid points (Nsp), the shortest elapsed time achieved for the relaxation

(trx) and evaporation simulation (tevap), respectively for each atom type. jevap = Nat
tevap

re-

ports the range of individual mean evaporation rates for each atom type collective. Deviations

in the total number of integration points due to the fact that meshes in different orientations

were sampled were with less than 1% deemed insignificant. The workstation IDs refer to Tab.

2.

Nat Nsp trx tevap jevap Workstation

min min min−1

Al 2.986× 105 1.167× 106 437 2847 73.1 to 104.5 16

Mg 2.111× 105 1.052× 106 253 1801 78.5 to 117.1 07

Zr 2.107× 105 1.051× 106 215 1943 46.0 to 73.6 06

W 3.095× 105 1.180× 106 252 1801 83.4 to 159.2 15

computations. This is one of several factors which currently hinder the scala-

bility of TAPSim simulations, whether parallel processing is used or not. This

will be detailed in the next section.

Detailed benchmarking. This paragraph summarizes key performance results

from the Meshgen and TAPSimprofiling study — the Mg tips in the reference35

orientation. Instead of quantifying performance using elapsed time data, fo-

cus is put on a dimensionless quantity which characterizes the efficiency of a

program - the CPI index. The CPI relates how many useful CPU program

instructions were successfully completed to how many CPU cycles this took.

Different computational task have different CPU cycle count demands1. For40

this reason average CPI values (scores) per function call are reported. A net

1Examples are the reading of data from main memory (millions of cycles), performing

arithmetic operations on data in the fastest CPU cache (1 cycle), evaluating trigonometric

functions or re-organizing the instruction workflow upon branch misprediction (approximately

a dozen cycles)
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Figure 1: All tips in the second study used the same workstation and level of parallelism.

Nevertheless, their net efficiency was found to be systematically lower the larger the tip

volume.

CPI score of 1 indicates a reasonably efficient program. However, given that

modern CPU cores can execute multiple arithmetic operations in one cycle,

lower CPI scores are in principle achievable, and should be aimed for during

optimizing a program 2.45

Observing a CPI = 1.0 substantiated that Meshgen executed reasonably

efficiently. It spent most of its time in the sequential meshing library TetGen (Si,

2015). The meshing itself took 8min. This was comparable to the tip synthesis

time with VESTA and MATLAB . Conversely, TAPSim (Fig. 2b) reached a less

efficient score of CPI = 1.36 when executing sequentially. In the benchmark50

2Facing super-scalar multi-level cache hierarchy architectures the discussion is more com-

plicated than can be summarized here. The interested reader is referred to (Hennessy &

Patterson, 2012) for details about such streaming instruction level parallelism and vectoriza-

tion.
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(a) Meshgen

(b) TAPSim , 1 thread

(c) TAPSim , 12 threads

Figure 2: Using advanced hot spot analyses it was identified how long it took to execute a)

Meshgen sequentially and b) TAPSim sequentially versus c) in parallel.

studies, TAPSimmaintained an average processing rate of ≈ 270min−1 atoms

per minute. The higher evaporation rate is a consequence of the exclusive

utilization of workstation 06 and its higher CPU clocking.

Intuitively, one seeks to speed up the simulation (Fig. 2c) by using more

cores. When 12 cores were used on a single simulation, the elapsed time was55
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approximately halved in comparison to sequential execution. However, the 11

additional cores were not fully loaded. As such, in terms of High Performance

Computing (HPC) resource utilization economy, moderately scaled parallelized

TAPSim simulations generated unnecessary additional core-hour consumption

compared to scheduling batches of individual, sequentially processed tip simu-60

lations, trivially in parallel.

There are two key observations which quantify scalability limitations of TAP-

Simwhen it runs in parallel. Firstly, a higher CPI ≈ 2.3 than expected. Fur-

ther, an approximate (1.7x) as many instructions to execute in total compared

to when running sequentially. To argue that this overhead is merely due to work65

sharing constructs, which every parallel program has to execute, in addition to

its pure workload in sequential execution, is not convincing. Rather, it is a

systematic overhead. This conclusion is supported by the higher CPI value,

which, quantifies the mean efficiency of the entire simulation. In fact, if TAP-

Simwere to also execute the additional work sharing constructs as efficiently as70

it executes its sequential workload, the CPI score should remain approximately

1. Hence, to pinpoint the reason for such low efficiency, it is useful to study how

efficiently TAPSimkept the cores busy (Fig. 3).

Compared to the sequential execution, the load gets dissimilarly distributed

across the cores when running in parallel. Specifically, the first core is forced75

to process most of the work, while the others idle frequently. In fact, five

cores are kept busy where 12 would have been expected for an ideally strong

scaling program. In effect, Fig. 3 quantifies that TAPSim is choked by load

imbalance and sequential overhead. An even closer inspection of the elapsed

time expenditures for individual functions of TAPSim is detailed in Fig. 4.80

A top-down analysis proves that the computePotential() part in particular, in

which ' 83% of the work accrues, executes less efficiently when utilizing more

cores. Any attempt to optimize TAPSim in the future should focus on this part

first.

One may argue that throughout the analysis done so far it was implicitly85

assumed that all computational tasks were ideally thread-parallelized. This,
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Figure 3: Core utilization for sequential and parallel execution of TAPSim . In practice,

TAPSim jobs run a factor of two faster when using 12 threads instead of only one. However,

this is at the cost of substantially more computational resources; most of which then work less

efficiently. This is because the computational load is unevenly distributed across the cores

and substantial sequential overhead exists.

however, is not the case for TAPSim— only its potential relaxation is fully

parallelized. Consequently, only a fraction of the sequential runtime is reduced.

The resulting maximum speedup can be estimated using Amdahl’s law (Am-

dahl, 1967) where p and 1−p specify the parallel and sequential execution time90

fractions respectively, and n, applied to the present example, the number of

threads in use. According to Fig. 4 a fraction of 80% was spent in computePo-

tential(). Consequently, a reduction of the sequential runtime to at most 0.26

is expected. Considering that the latter function labels a collection of multiple

tasks (Fig. 5), it is evident that the actual elapsed time fraction TAPSim spent95

in parallel was even lower. Using p = 0.8 · 0.881 ≈ 0.7 evaluates, to a maximum

practically, achievable speedup of ≈ 3. To measure the quantitative data in Fig.

5, an additional simulation of the Magnesium tip in the reference configuration

was executed sequentially. Therein, workstation 16 was used exclusively and
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Figure 4: A profiling of the individual function calls reveals that the most significant work

package is the potential relaxation. Execution of exactly this part, though, becomes more

inefficient when running in parallel as documented through a higher CPI ≈ 2.8 compared to

the sequentially achieved CPI ≈ 1.6. This pinpoints that primarily load imbalance and work

organization overhead choke performance.

TAPSimmonitored via its VERBOSE option.100

Figure 5: Analyzing the individual computational tasks identifies an approximate runtime

fraction of 88% for the relaxation.

The above quantitative corrections put the scalability of TAPSim into per-
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spective. They pinpoint that technical modifications to the code base are nec-

essary to enable more productive TAPSim simulations, in terms of efficiently

simulating tips similar to that observed experimentally as well as improving

the parallel efficiency of the application. The latter is useful in particular to105

remain compliant and competitive with the ever stricter strong scalability re-

quirements of HPC architectures such as supercomputers. While implementing

these changes is beyond the scope of this work, it provides insight into the exe-

cution of the current source code sections and areas for improvement potential.

Source code analysis to identify improvement potential. Specifically, the pthread110

library cwrapper core functions threadedRelax(), threadedLocalRelax(), and

aforementioned computePotential() are of interest. With these, TAPSim cycles

through a global data structure, the cell grid (referred to as “data” in the respec-

tive source code sections) and a collection of associated cell nodes (Oberdorfer,

2014). The latter are implemented as C++ class objects and stored in a global115

array of nodes. Individually, these objects allocate additional shared memory

snippets to store nodal pieces of information for book-keeping localized refer-

ences to neighboring nodes and weighting factors to accelerate the relaxation

computations. The cell nodes work as follows: for each cell, its neighbors are

identified. Next, their potential values are collected to compute a new value.120

Thereafter, the new value is written back. The processing of cells for each

relaxation cycle is distributed on the threads by assigning them a number of

predefined nodes to process. The procedure, as in the current code, causes a

blockage because all threads have to complete their work package before a new

cycle is initiated.125

For such an algorithm and data structure to run efficiently, several imple-

mentation measures must be optimized. First of all, the partitioning of the cells

to their respective threads should result in a workload which is as balanced as

possible. Otherwise, individual threads idle before a new relaxation cycle is

initiated, causing an increase in CPU cycles, i.e. higher CPI values.130

Given that collecting potential values of neighboring cells is one of the key

9



tasks in the algorithm, it is also essential to do so most efficiently. This requires

the most efficient use and re-utilization of data inside the fastest CPU caches.

Currently, though, TAPSim employs a data structure which, by design, provokes

the spreading of nodal pieces of information in main memory because they are135

stored in individual, per cell, allocated memory snippets. However, upon allo-

cation with standard allocator implementations, there is no guarantee that such

individually allocated snippets are either properly aligned at cache boundaries

or refer to nearby main memory addresses at all (Hennessy & Patterson, 2012).

As this fragmentation affects all cells, its induced effects on performance are140

expected to be more severe with larger numbers of cells, i.e. the tip volume

studied. In effect, TAPSim currently dereferences effectively slower responsive

memory locations which for memory bound algorithms will increase the CPI

value (Hennessy & Patterson, 2012).

This source code analysis-based insight is substantiated by the measured145

profiling data (Fig.2). They explain how TAPSimdisplays a high CPI = 1.6,

even during sequential execution. This identifies idling and fetching of local

data from remote memory as one effective performance brake.
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0.2. Recommendations for future code design

For the sake of completeness it follows a copy of the recommen-150

dation section from the main paper. The above findings prompt several

recommendations to TAPSimusers and developers of TAPSimkind APT simu-

lation tools.

• The TAPSimdefault setting to use all available cores on the target system3

should be replaced by running sequentially (“–threads=1”) by default. In-155

stead, the user should specify if additional threads should be used and how

to make a compromise between speeding up the simulation yet avoiding

unnecessary blocking of many cores. Using Amdahl’s law, the present

data suggest using thread counts between 1 and 4 is best to achieve this

compromise.160

• It is the total number of integration points rather than the number of

atoms in the tip to evaporate only which defines the runtime of TAP-

Sim . Therefore, it should become best practice in papers to include all

significant pieces of information when reporting elapsed time data. These

should be at least the version of TAPSimused, the number of ions in the165

actual tip, the number of support mesh points, the CPU type, and the

execution protocol used, i.e. how many cores for threading were instructed

and whether or not they were used exclusively.

• Proper reporting of hardware details in the literature when describing the

run time performance of TAPSim . In particular, the affect of the in-170

putted tip radii size on the evaporation rate. Oberdorfer reported (Ober-

dorfer et al., 2013; Oberdorfer, 2014) an order of magnitude lower evapora-

tion rate 12min−1 when executing a large simulation comprising 28× 106

atoms, with 56× 106 points in the emitter structure, and a total of 328× 106

cells. The result was attributed to trajectory computations as the main175

3through at-runtime-executed system calls using “ SC NPROCESSORS ONLN”
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bottleneck. The argument is reasonable given that TAPSim implements

a recurring sequence of parallelized local relaxation, candidate selection,

and sequential trajectory integration but the explanation lacked informa-

tion on the hardware details, which are required to properly understand

this performance report quantitatively.180

• To the best of our knowledge, this study revealed an undocumented im-

plementation error in TAPSim . It causes some tips to fail and affects

system performance critically when doing so. The issue manifests as an

uncontrolled allocation of main memory within a never exiting while loop

inside the get voronoiFace() function. This is likely due to numerical side185

effects which occur during code execution, regardless of the optimization

level chosen. This results in a continuous allocation of memory, eventually

leading to system exhaustion4.

• Consider implementing a re-meshing strategy. The current design uses the

same Voronoi cell spatial resolution of the tip throughout the entire sim-190

ulation. Once an atom is evaporated, its corresponding node cell type is

switched from a removable atom to represent vacuum. In effect, trajectory

computations become successively finer for atoms which evaporate later

in the sequence as their flight path is integrated along a chain vacuum

cells that once represented the tip. A re-inspection of the already existent195

adaptive solving strategy within TAPSimor an additional implementation

of a discontinuously applied fusing of cells into larger is likely useful. Pri-

marily if this allows to reduce the size of the node array and thereby cell

structure querying costs.

• Partition the global node array, which stores the cells, into multiple arrays.200

4This error was located within the obj−>tets.front() != obj−>tets.back() while loop (line

1301, geometry 3d.cpp, TAPSimv1.0b rev3225). Instrumented source code and a documented

example was made available as supplementary material (Kühbach & Breen, 2018) to assist

solving the issue.
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Do so by sub-dividing the dense inner grid layer of the tip into spatially

disjoint regions. Parallelized adaptive meshing tools (de Cougny et al.,

1994; de Cougny & Shephard, 1999; Fryxell et al., 2000; Loseille et al.,

2015; Owen et al., 2017) are an alternative to consider when improving

the meshing process.205

• In each such mesh region, all nodes should be stored in a contiguous array.

Each thread then gets assigned one region to process. Individually, their

arrays should be allocated via thread-local memory, potentially making

even use of alternative allocator libraries5, to improve memory locality.

Local pieces of information for each node should always be held in aligned210

arrays.

• Utilize in-time parallelism and double buffering strategy. This will be use-

ful because trajectory computations are independent from local relaxation

computations, provided that a copy of potential values for the previous

state in the evaporation sequence exists. Admittedly, storing multiple215

copies of field values may appear counter-intuitive as one usually seeks

to save memory. However, allocating additional memory for carrying the

previous electrostatic potential values eventually allows one to decouple

the temporal sequentiality of the current evaporation algorithm into a dis-

patching of trajectory computations to workers. Such in-time parallelism220

is likely to overcompensate for the costs of allocating additional memory.

• Explore more computationally demanding trajectory integration, such as

a more realistic chamber geometry with a counter electrode and handle

trajectories against impenetrable tomograph chamber parts in the flight

path.225

• Switch from using pthreads to the Open Multi-Processing (OpenMP) Ad-

5such as jemalloc (https://github.com/jemalloc/jemalloc) or tcmalloc (http://goog-

perftools.sourceforge.net/doc/tcmalloc.html)
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vanced Programming Interface (API) (Chandra et al., 2001), for instance,

for improved flexibility in the partitioning and controlling of load parti-

tioning.
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