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Appendix A: 
Duration Model Overview 

 
Duration models are concerned with lengths of time as dependent variable.  They are useful when 

we are investigating questions about how long before a subject experiences some event.  We count the 

number of periods the subject “survives” before experiencing the event; the resultant quantity is t, our 

duration of interest and dependent variable.  OLS is not particularly well-suited to model durations, 

because it assumes (1) the dependent variable can be positive or negative, (2) that the regression 

equation’s errors are normally distributed, (3) that all covariates are constant across the duration’s length, 

and (4) that all our subjects fail during our observation period, meaning that we know the start and end 

point of every subject’s duration (Crowder 2012, 3–5).  One or more of these assumptions are false when 

working with durations as a dependent variable—quantities of time are non-negative, the errors they 

subsequently produce can be non-normal, covariates can be time varying, and we do not always observe 

the duration’s end point for all our subjects (i.e., we may have right-censored durations). 

 Duration models come in three major classes.  The classes are differentiated from one another 

based on two factors.  The first factor is baseline hazard functional form.  It refers to whether we assume 

a functional form connecting the baseline hazard (h0) to our observed t’s, where the baseline hazard 

expresses the hazard of the duration’s terminating event occurring when there are either no covariates in 

the model, or when all of the covariates are set to zero.  The second factor is the covariate link function.  

Here, we refer to whether there are covariates in the model, because if there are, we must specify a 

function connecting these covariates to our observed t’s.  We use x to refer to a single covariate, and X to 

refer to the entire set of included covariates. 

We begin our discussion with continuous-time durations.  The continuous vs. discrete distinction 

derives from the underlying process generating your event of interest, not the frequency with which you 

measure your data.  Continuous-time durations come from an underlying process in which your event of 

interest could occur *at any instant,* similar to how hockey or soccer scoring could occur at any time 
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when play is live.22  If we assume no functional form for the hazard and have no covariates, we obtain a 

non-parametric duration model.  The Kaplan-Meier curve is the classic example, and is usually expressed 

in terms of the survivor function S(t), which represents the fraction of subjects still at risk in t.23  Its 

equation is (Klein and Moeschberger 2003, 92): 

𝑆(𝑡) = � �1 −
𝑑𝑡
𝑁𝑡
�

𝑡 < 𝑡Max

 1 

implying that the hazard function is: 

ℎ(𝑡) =
𝑑𝑡
𝑁𝑡

 2 

where 𝑡Max represents the largest recorded failure time, dt represents the number of subjects that fail in 

time period t, and Nt represents the number of subjects still at risk at the start of t, which some denote as 

Nt-. 

If we continue to impose no functional form for the baseline hazard, but include covariates in our 

specification, we now have a semi-parametric duration model.  Cox proportional hazard models are the 

most ubiquitous of the semi-parametric duration models.  Cox models take the form: 

ℎ(𝑡) = ℎ0(𝑡)exp (𝛽′𝑋) 3 

Notice how the covariates (X) and their corresponding estimates (β) are linked to h(t) using an exponential 

link function—we are exponentiating the linear score of β and X’s product.   

Finally, if we do make a functional form assumption about the baseline hazard, with or without 

covariates, we obtain a parametric duration model.  There are many variants of parametric duration 

models.  They differ from one another in terms of the baseline hazard’s functional form.  For example, a 

Weibull parametric duration model, when specified in terms of proportional hazards (denoted with “PH” 

subscript), has the form: 

                                                      
22 By contrast for discrete-time durations, to continue the sports analogy: baseball and American football scoring 
plays are inherently from a process in which time is discrete.  Baseball runs can only occur for every attempted pitch 
in a game, while American football scoring can only occur for every attempted play in which the ball becomes live. 
23 If a semi-parametric duration model does not include covariates, the resulting h(t) is a non-parametric expression. 
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ℎ(𝑡) = 𝑝𝑡𝑝−1exp (𝛽𝑃𝑃
′𝑋) 4 

where p is the hazard’s shape parameter, a quantity to be estimated from the data.  Box-Steffensmeier and 

Jones (2004, chap. 3) provide a list of parametric duration models commonly used in political science, 

along with the models’ functional forms. 

On a concluding note, duration models’ estimated coefficients can come in one of two metrics: 

accelerated failure time (AFT) or proportional hazards (PH).  The coefficients’ metric matters because a 

positive AFT coefficient means the opposite of a positive PH coefficient.  Some duration models’ 

coefficients can be reported in either metric (e.g., Weibull, exponential),24 but some models’ coefficients 

can only be reported in AFT (e.g., generalized Gamma, log-logistic, log-normal) or only in PH (e.g., 

Gompertz, Cox).  Whether or not a model can be reported in AFT or PH depends on whether the model’s 

underlying hazard can be reexpressed in a certain way.  Coefficients in an AFT metric speak directly to 

x’s effect on the duration, where a positive 𝛽𝐴𝐹𝑇 means higher levels of x will lengthen t, the duration of 

interest.  By contrast, coefficients from PH metric speak in to x’s effect on the hazard of the duration 

ending (h(t)).  Specifically, the hazard acts like a conditional probability, modeling the probability that 

subject i will experience the event terminating our duration in time period j, given that i has not 

experienced the event yet.25  A positive 𝛽𝑃𝑃 means higher levels of x increase the probability of the 

duration’s terminating event, implying the duration itself will be shorter. 

  

                                                      
24 Importantly, the AFT vs. PH metrics for Weibull and exponential parametric models are based on the same 

underlying math.  You can transform AFT coefficients into PH coefficients or vice-versa (Box-Steffensmeier and 

Jones 2004, 29). 
25 Continuous-time hazards are technically conditional risks, not probabilities; see Appendix B, Section 3. 
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Appendix B: 
Different Interpretation Techniques 

 
Our theme throughout is that predicted durations are typically more straightforward to interpret 

than predicted hazards, though they too have limitations.  However, some duration models cannot 

generate predicted durations easily, making hazard-based interpretations the only option.  Hazards have 

few, if any, quantities that are easy to interpret.  Transition probabilities fill this specific need, as they are 

computed using hazards, but are interpretable as probabilities.  

 

1.  EXPECTED DURATION/MEDIAN DURATION 

 One way to interpret duration models is to predict t from its estimates, akin to how we can predict 

y from OLS models.  In OLS, we take expectations to yield: 

𝐸(𝑦|𝑋) = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 

which is what we usually call “predicted y” (𝑦�). 

Duration models are more complicated, because some of the parametric models’ underlying 

distributions are not symmetric.  The Weibull parametric duration model is one example.  Because of the 

non-symmetry, two quantities may be of interest to us: the mean duration time (via expectations) and the 

median duration time.  The expression for each quantity varies depending on the baseline hazard’s 

functional form (for formulas, see Box-Steffensmeier and Jones 2004, chap. 3).   

 This interpretation technique works well for any parametric duration model, regardless of metric.  

Deriving the mean and median t for semi-parametric Cox models is more difficult, because both formulae 

involve an assumption about the baseline hazard’s functional form.  The Cox’s defining feature is that it 

does not assume anything about the baseline hazard’s functional form.  Kropko and Harden (forthcoming) 

provide a technique for recovering expected durations from a Cox model, by using a generalized additive 

model (GAM) to regress the Cox’s predicted exp (𝛽𝑃𝑃
′𝑋) against t, the observed duration.  For non-

parametric models, the mean and median are also derivable expressions by way the Kaplan-Meier 

estimate of S(t) (see Klein and Moeschberger 2003, 32–33). 
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2.  MARGINAL EFFECTS/FIRST DIFFERENCES/TIME RATIO 

 We can also calculate the effect of a change in x on the expected duration, if we so desire.26  It is 

akin to interpreting β in OLS, because OLS β estimates are equivalent to marginal effects.  If x is 

continuous, we can take the partial derivative of E(t|X) with respect to x, yielding x’s marginal effect.  

Marginal effects tell us how much E(t|X) changes for an infinitesimally small increase in x’s value from 

some value (x = 0, or 1, 2…).  If x is non-continuous, we can take the discrete first difference.  The first 

difference would tell us how much E(t|X) changes for a one-unit increase in x from some value.  First 

differences are also perfectly acceptable for a continuous x.  Licht (2011, 230) nicely summarizes the 

differences between marginal effects and first differences, in the context of interpreting interaction effects 

in duration models.  Her summary generalizes to models without interaction terms.  In practice, we prefer 

calculating first differences, regardless of whether x is continuous or not.  We find it easier to speak of 

specific changes in x’s value, instead of a nebulous “infinitesimally small increase,” and how those 

specific changes correspond to changes in the mean duration.  However, we reiterate that both marginal 

effects and first differences are correct, from a technical perspective. 

It is also possible to interpret x’s effect using a time ratio.  Time ratios express, for a one-unit 

increase in x, how many times larger or smaller the mean duration becomes, holding all else equal.  Time 

ratios work for models in an AFT metric, and are equal to exp(βAFT).  Box-Steffensmeier and Jones refer to 

these in terms of “relative expected duration time” (2004, 29).  Time ratios’ use is rare in political 

science, but we mention them because of the analogous quantity for hazard-based models (hazard ratios), 

which we discuss in Appendix B, Section 4.  Our general remarks there apply to time ratios as well. 

 

                                                      
26 If we wanted, we could also calculate x’s marginal effect on the median duration, instead of E(t|X) (Box-

Steffensmeier and Jones 2004, 31).  We use the mean duration throughout this paragraph for explication purposes. 
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3.  HAZARD RATE 

In continuous-time duration models, the hazard represents the instantaneous rate at which the 

termination event occurs.  We can interpret x’s effect with respect to the hazard of the event occurring.  

Hazard-related interpretations are common for duration models whose βs come only in a PH metric, with 

Cox models being the canonical example.  The generic form for any (proportional) hazard is: 

ℎ(𝑡) = ℎ0(𝑡)exp (𝛽𝑃𝑃
′𝑋) 5 

The first hazard-related interpretation involves predicting h(t)’s value for a particular covariate 

profile, similar to how we can predict t for some models.  h0(t)’s functional form will vary, depending on 

what type of duration model is estimated.  

This interpretation technique works well for parametric duration models, because we impose a 

functional form for h0(t).  The technique works less well for Cox models, since we do not impose a 

functional form for h0(t), but it is possible to recover an estimate for h0(t) after estimating the model.  

Some software packages provide a canned procedure for plotting a smoothed estimate of a Cox’s h(t), 

which automatically recovers h0(t) when creating the plot, as we discuss in Appendix D.  In lieu of a 

canned procedure, the cumulative hazard, H(t), is an easier quantity to plot for Cox models because it can 

be estimated from the survivor function: H(t) = –ln(S(t)).   

The major drawback for hazard rates is their interpretability.  Hazards, as a predicted quantity, are 

arguably unique to duration models with little analogue elsewhere, which hampers scholars’ ability to 

effectively communicate substantive findings to a broader scholarly, or general, audience.27  At best, 

hazards represent a conditional probability (discrete-time durations): the probability that the duration’s 

terminating event occurs, given that it has not occurred yet.  At worst, they represent an instantaneous risk 

(continuous-time durations), with a similar interpretation as marginal effects: it is the risk of experiencing 

                                                      
27 The notable exception is sample selection models.  The selection equation generates the inverse of Mills’ ratio 

(IMR), which is then included as a regressor in the outcome equation.  The IMR is, in fact, a hazard (Heckman 

1979). 
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the duration’s terminating event for an infinitesimally small increase in t’s value.  Neither possibility is 

particularly appealing, nor straightforward to convey easily.28 

 

3.1.  CUMULATIVE HAZARD AND SURVIVOR 

 Researchers also use two other absolute quantities to interpret duration models, which are 

particularly prevalent techniques for interpreting semi-parametric models.  The first is H(t), the 

cumulative hazard, which we mentioned above.  H(t)’s slope speaks to the rate at which h(t) changes, and 

can be larger than 1.  H(t) can be useful for comparing various covariate profiles, because H(t) graphs will 

show which covariate profile has the highest risk of the event occurring to date.  However, H(t)’s biggest 

drawback is that its magnitude is not particularly informative on its own (Singer and Willett 2003, 488).29  

Researchers require additional context to get a sense of an event’s risk of occurrence overall.  For 

instance, a cumulative hazard equal to 1.2 for a particular covariate profile tells us nothing.  We would 

need another covariate profile or two, to be able to get a sense of whether this value is large or small by 

making relative comparisons.  

 The second quantity is S(t), the survivor function, defined formally as S(t) = Pr(T ≥ t).  The 

survivor function provides information about how many subjects’ failure times (denoted T in the formula) 

are above a specific time (usually denoted t).  For instance, if we had five subjects who each failed at t = 

1, 2, 7, 8, and 10, S(t = 5) = 0.6, since three subjects have failure times larger than 5.30  We like the 

survivor function, because it is a close relative of transition probabilities, a newer technique we discuss in 

a moment.  There are highly specific situations where transition probabilities will actually equal F(t) = 1 –
                                                      
28 Hazard rates also have a count-based interpretation, arguably the least inaccessible of all the possible 

interpretations.  It begins by allowing events to occur repeatedly, hypothetically.  A hazard rate then represents the 

expected number of events that would occur in one time period, assuming the rate stays constant within that time 

period (Cleves et al. 2010, 15).  Hazard rates’ risk-based interpretation is more common. 
29 Cumulative hazards can have a similar count-based interpretation as h(t) (fn. 28): it is the number of events we 

would (hypothetically) expect to see from t = 0 through the current time period. 
30 Sedgwick and Joekes (2013) provide some examples of interpreting the Kaplan-Meier, along with common 

misconceptions about what the quantity represents. 
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 S(t).31  Teachman and Hayward (1993) showcase S(t)’s usefulness for interpreting hazard-based models, 

and provide example interpretations.  To the extent S(t) (or F(t)) have weaknesses, they are less useful for 

interpreting more complex duration models, such as competing risks and repeated events.  However, they 

are not alone.  Many of the other interpretation strategies we list also become more unwieldy to use for 

interpreting more complex duration models, with the exception of transition probabilities. 

 

4.  HAZARD RATIO, PERCENT CHANGE IN HAZARD RATE 

For relative comparisons using the hazard, one option is the hazard ratio, also sometimes called 

the risk ratio or relative risk (Box-Steffensmeier and Jones 2004, 50; Mills 2011, 94).  The hazard ratio is 

equal to exp(βPH), and it describes “the effect of a one-unit difference in the associated predictor on 

the…hazard” (Singer and Willett 2003, 524).  It is a ratio because it compares h(t) from one covariate 

profile (x(1) = 0, say) to h(t) from another covariate profile (x(2) = 1), and expresses how to obtain h(t|x(2)) 

as a multiple of h(t|x(1)).  Or, more plainly: if we think of covariate profile x(1)’s hazard as an image, 

exp(βPH) represents how much you would have to shrink or enlarge that image to obtain covariate profile 

x(2)’s hazard.  This is evident from inserting x(1) = 0 and x(2) = 1 as arbitrary values into equation 5 and 

simplifying terms:  

ℎ�𝑡|𝑥(1)� = ℎ0(𝑡)exp(𝛽𝑃𝑃𝑥(1)) ℎ�𝑡|𝑥(2)� = ℎ0(𝑡)exp(𝛽𝑃𝑃𝑥(2)) 6 

ℎ�𝑡|𝑥(2)�
ℎ�𝑡|𝑥(1)�

=
exp�𝛽𝑃𝑃𝑥(2)�
exp�𝛽𝑃𝑃𝑥(1)�

 

ℎ(𝑡|𝑥 = 1)
ℎ(𝑡|𝑥 = 0) = exp(𝛽𝑃𝑃[1 − 0]) 

 

                                                      
31 The two will be equal for a classic duration transition structure—all subjects start in stage 1, two possible stages, 

and the only transition possible is 1→2—when the transition probability interval begins at s = 0.  In a similar vein, 

our transition probabilities will equal the cumulative incidence function (CIF) in a classic competing risks 

situation—all subjects begin in stage 1, there are any number of additional stages, and the only possible transitions 

are out of stage 1—again when the transition probability interval begins at s = 0 (Putter, Fiocco, and Geskus 2007, 

2424). 
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ℎ(𝑡|𝑥 = 1) = exp(𝛽𝑃𝑃)ℎ(𝑡|𝑥 = 0) 

This interpretation technique is appealing for Cox models, because the baseline hazard terms 

cancel out in the ratio, eliminating the complications arising from h0(t) in a semi-parametric expression.  

Because of the exponentiation, we are interested in seeing whether exp(βPH) is statistically different from 1 

for hypothesis testing purposes, since exp(0) = 1.  A hazard ratio greater than 1 means that a (x(2) – x(1))-

unit change from x(1) produces a higher hazard rate.  A hazard ratio less than 1 means that a (x(2) – x(1))-

unit change from x(1) produces a lower hazard rate.  The hazard ratio’s major disadvantage is yet again its 

interpretability.  Hazard ratios are not particularly intuitive quantities, perhaps because they refer to the 

hazard’s scale across two different covariate profiles.  This is especially true for audiences not already 

familiar with hazards, as we have already mentioned.  Hazard ratios are also relative measures of change, 

meaning they may be misleading for infrequent events, as we discuss in the context of percent changes in 

h(t). 

Finally, we can compute x’s effect on h(t) via the marginal effect or first difference.  The 

generalities of our marginal effects/first difference discussion, when t was the quantity of interest, also 

apply here.  For h(t), the percent change in the hazard’s value is similar to the first difference (though not 

equivalent), and is used more frequently.  To calculate how some change in x’s value affects h(t) in terms 

of percent change, the formula is (Box-Steffensmeier and Jones 2004, 60; Mills 2011, 95):  

%Δℎ(𝑡|𝑋) =
�exp�𝛽𝑃𝑃𝑥(2)� − exp�𝛽𝑃𝑃𝑥(1)��

exp�𝛽𝑃𝑃𝑥(1)�
∗ 100 

%Δℎ(𝑡|𝑋) = �exp�𝛽𝑃𝑃�𝑥(2) − 𝑥(1)�� − 1� ∗ 100 

7 

where x(1) and x(2) denote the x values of interest.  Earlier, we used x(1) = 1 and x(2) = 0. 

Box-Steffensmeier and Jones (2004, 60) showcase %Δℎ(𝑡|𝑋) as a preferred way for interpreting 

Cox models, for reasons that make sense.  h(t) is not an intuitive quantity, but percentages at least appear 

in other contexts, providing some modicum of familiarity to scholars.  %Δℎ(𝑡|𝑋) does nevertheless have 

limitations, aside from h(t)’s interpretability.  In particular, as with any method focusing on percent 
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changes in y’s value, the quantity may be misleading for relatively infrequent events.  For instance, it may 

be that increasing x’s value produces a 100% increase in the hazard rate.  However, in substantive terms, 

this may be a very small change in the likelihood of an event actually occurring.  A 100% increase the 

hazard could come about if h(t) increased in value from 0.4 to 0.8 (fairly frequent event), but it could also 

come about if the hazard increased from 0.00001 to 0.00002 (very infrequent event).  We simply cannot 

tell from percentage changes alone. 

 

5.  TRANSITION PROBABILITIES 

 Transition probabilities are a newer interpretation strategy.  Their origin is in the multi-state 

duration model literature (see Metzger and Jones 2016 for further details).  We also write further about 

them elsewhere (Metzger and Jones 2019).  Despite the strategy’s newness, we still include it because we 

are intrigued by the quantity’s longer-term potential, hence our continued work in this area.  Transition 

probabilities interpret duration model results from a new angle,32 making the models potentially appealing 

to scholars who find duration-based or hazard-based interpretations unappealing.  

Transition probabilities follow from the insight that any duration application can equivalently be 

conceived of as a transition between two or more stages.  For instance, in studies of democratization, we 

might be interested in studying when non-democracies become democracies, thus the event in question is 

democratization.  This can be equivalently thought of as countries occupying one of two stages, either a 

non-democratic stage, or a democratic stage, and our interest is understanding when countries transition 

from the former to the latter.  Under this stage conceptualization, we are interested in not only when a 

transition between stages occurs, but also, which of the two stages a country occupies at any given point 

in time.  Transition probabilities aim to answer the latter question—what is the probability of being in one 

stage or another. 

 Transition probabilities express the probability of being in some stage by a particular point in 

                                                      
32 See fn. 31 for the specific instances where transition probabilities will be equivalent with F(t) (= 1 – S(t)) and the 

CIF. 
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time, given some set of starting conditions.  We provide several applied examples where we interpret the 

quantities in our joint work (2018; Metzger and Jones 2016, 2019) and other work (Daniel and Metzger 

2018; Jones 2013; Mattiacci and Jones 2016).  Researchers must specify three things to generate a 

transition probability: the stage a subject starts in, how long the subject has already been at risk, and a 

covariate profile. 

Transition probabilities’ major strength is the ease with which they can be interpreted, since they 

are probability-based.  Further, they are computed from cumulative hazards, meaning they take one of the 

more hard-to-interpret duration model quantities and transform them into something more useful.  

Transition probabilities can be calculated from any duration model, and if the quantity is simulated, they 

can be generated from models with any number of stage configurations.  As far as drawbacks, the 

probabilities’ computation time can be lengthy, since the two packages for generating Cox transition 

probabilities (mstate in R, mstatecox in Stata) both employ simulations.  This is particularly true 

when the transition probabilities’ magnitude is low, because in order to get sufficiently precise quantities 

for inference making, you will need a large number of subjects for each simulation pull.   

Most of the remaining drawbacks are all related to human error.  Like any predicted quantity, 

transition probabilities are only as sound as the estimated model they are generated from.  If the estimated 

model is wrong, the probabilities will be, too.  Similarly, if you misunderstand how the probabilities are 

interpreted, then the conclusions you draw will likely be wrong.  Transition probabilities tell you the 

probability of transitioning *by* a specific time, not the probability of transitioning *in* a specific 

time.  To see the distinction: there is a big difference in saying a flight took off at 1pm and landed by 

3pm, and saying that a flight took off at 1pm and landed at 3pm.  The former is correct for transition 

probabilities, not the latter.  
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Appendix C: 
Example Application, with Interpretations 

 
To demonstrate the some of the interpretation strategies for duration models discussed in the 

paper, we rely on a simplified dataset of turnover in the European Parliament.33  The unit of analysis in 

the dataset is the individual member of European Parliament (MEP), and the dependent variable is the 

number of terms the member serves before leaving office.  We include 6 independent variables: whether 

the MEP’s home country has a federal system, his/her age, whether the MEP holds a leadership position 

in the European Parliament, whether the MEP holds a committee leadership post, whether they belong to 

a far-left party, and a dummy variable for whether the MEP is female.  All of our model estimates and 

predicted quantities in this appendix are computed in R 3.4.2.  We report our semi-parametric Cox model 

containing these variables in Table 2.  The first column presents the coefficient estimates from the model, 

and the second presents hazard ratios, which will be discussed below.  We focus on interpreting the 

various quantities here; for more on general explanations of each quantity, see Appendix B.  

TABLE 2.  MEP Turnover  
 Coefficients Hazard Ratios 
Federal System -0.267*** 0.766 

(0.051) (0.694, 0.846) 
Age -0.011*** 0.989 
 (0.003) (0.984, 0.994) 
Leadership Position in EP -0.455*** 0.635 
 (0.092) (0.530, 0.760) 
EP Committee Leadership 0.010 1.01 
 (0.063) (0.893, 1.14) 
Far Left 0.117 1.12 
 (0.090) (0.942, 1.341) 
Female -0.249*** 0.779 
 (0.060) (0.693, 0.877) 
Partial Log-Likelihood -11975.28 
† = p ≤ 0.10, * = p ≤ 0.05, ** = p ≤ 0.01, two-tailed tests.  Standard errors reported in 
parentheses beneath coefficient estimates, 95% confidence intervals presented beneath 
hazard ratios in parentheses.  

  

                                                      
33 The full dataset is based on Daniel (2015). 
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A.  Hazard Ratio/% Change in Hazard Ratio 

Hazard ratios can be calculated simply by exponentiating the coefficients from a semi-parametric 

Cox model.  In R and Stata, these untransformed coefficients are provided by default when estimating a 

Cox model.   In the model specification presented above, the indicator for whether an MEP’s home 

country has a federal system has a hazard ratio of 0.766.  Hazard ratios are relative to 1, with values 

below 1 indicating higher values of the independent variable reduce the hazard of an event occurring, and 

values above 1 indicating that higher values of the independent variables increase the hazard of an event 

occurring.  Hazard ratios’ interpretation is based on a one-unit increase in the independent variable’s 

value, similar to a classic OLS coefficient interpretation.  Thus, a hazard ratio of 0.766 indicates that an 

MEP from a federal system (= 1) is less likely to leave office than an MEP from a non-federal system 

(= 0).  Specifically, the hazard of a federal MEP leaving office is 0.766 the size of a non-federal MEP’s 

hazard of leaving office, holding all else equal.  Moreover, as the 95% confidence intervals do not include 

1, we can conclude the hazard ratio is statistically significant at the 95% level.   

Hazard ratios can be easily transformed into a percentage scale by simply subtracting the hazard 

ratio from 1 and multiplying by 100.  So, in the case above, a hazard ratio of 0.766 means if we were to 

change from a non-federal to a federal system (i.e., a change from 0 to 1), it would correspond with a (1 –

 0.766) * 100 = 23.4% reduction in the risk of an MEP leaving office at the end of his/her term.  The 

hazard ratio’s statistical significance is typically calculated using the standard error for the estimated 

coefficient (βPH).  However, R’s simPH package also allows for simulated measures of uncertainty. 

 One drawback of relying on hazard ratios is that a one-unit change in the independent variable 

may not be meaningful in all circumstances.  For example, the age variable ranges from 21 to 88.  As a 

result, a one-unit change  may not be especially informative.  Similarly, if a variable is bounded between 

0 and 1, a one-unit change would represent a change from the minimum to the maximum, which may not 

necessarily be the most reasonable comparison.   

Instead, estimating relative hazards may be more instructive.  Relative hazards offer a comparison 

between subjects with two fixed values that may be more or less than one unit apart.  One useful strategy 
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is to re-center the age variable around the median by simply subtracting its median value from all of the 

observed values.  Doing so results in an age variable that is now centered around 0, with negative values 

indicating ages below the median, and positive values indicating ages above the median.  With this re-

scaling complete, we can now estimate relative hazards which compare scenarios in which age is 0 (the 

median) and other values, to achieve a more nuanced sense of how reasonable increases or decreases in an 

MEP’s age alter the risk that s/he will experience turnover at the end of their term. 

 Figure 2 plots a sequence of these relative hazards ranging from the minimum to the maximum 

observed values of the re-scaled age variable.  For each value along the x-axis, we estimate a relative 

hazard, comparing how a change from 0 (the median) to the value on the x-axis impacts the hazard of 

leaving office.  simPH will simulate these values and automatically generate 95% confidence intervals 

(Figure 2’s shaded region).  As the figure shows, there is a clear relationship with values below the 

median significantly increasing the hazard of MEP turnover, whereas values above the median reduce the 

hazard of MEP turnover. 
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FIGURE 2.  Relative Hazards of MEP Turnover 

 
NOTE: Solid blue line represents median estimate, with other lines indicating simulated values. Dashed 
horizontal line denotes 1.  
 
B.  Survival Curves  

Survival curves are another common method for interpreting duration model results in political 

science.  The survivor function, which is what we plot when graphing a survival curve, represents the 

probability that a subject will not experience an event in a particular year—i.e., the probability that the 

subject will continue to survive.  In the context of MEP turnover, survival curves may offer some 

additional substantive appeal, as the question can be slightly reframed to: what is the probability of an 
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MEP remaining in office?  When reframed in this way, survival curves offer a useful means for 

substantive interpretation.   

Estimating survival curves and their corresponding confidence intervals is fairly straightforward 

with R’s survival package.  Though survival curves have a more intuitive direct interpretation than 

some alternative strategies, such as hazard rates, it is nevertheless advisable to present two or more 

survival curves to offer a relative comparison of how changes in one or more covariates changes the 

probability of survival.  We discuss why in the main text’s Section II.  Additionally, depending on the 

application, the probability of experiencing an event may be quite high, or quite low, so only presenting a 

single curve is potentially misleading.   

With this in mind, we present two survival curves in Figure 3, varying whether the MEP’s home 

country has a federal system or not, and holding all other independent variables at their median values.  

The probability of an MEP remaining in office—equivalent to not experiencing turnover—is higher when 

their home country has a federal system (red lines) than when it does not (black lines).  Moreover, 

checking the confidence intervals’ overlap indicates this effect is statistically significant following an 

MEP’s first term, through their fourth term.  However, following their fourth term in office, whether an 

MEP’s home country has a federal system no longer has a statistically significant effect on their 

probability of remaining in office, as the confidence intervals for the two survival curves now overlap.   
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FIGURE 3.  Survival Curves of MEP Turnover 

 
NOTE: Dashed lines represent 95% confidence intervals.  
 

C.  Cumulative Hazards 

Cumulative hazards are related to survival curves, and are another potentially useful tool for 

substantive interpretation.  The cumulative hazard function’s value represents the overall risk of an event 

having occurred to date, though the values themselves are not directly interpretable beyond what we 

mention in the main text’s fn. 20.  Much like survival curves, cumulative hazards and confidence intervals 

are straightforward to estimate with R’s survival package.   

 We present two cumulative hazard estimates in Figure 4, varying whether an MEP’s home 

country has a federal system or not, and holding all other covariates at their median values.  As can be 

seen, MEP’s from non-federal countries consistently have a higher risk of having experienced turnover 

(black lines) than their counterparts from federal countries (red lines).  However, as was the case with the 

survival curves, this effect loses statistical significance at the 95% level after an MEP has been in office 

for five or more terms, indicated by the overlapping confidence intervals. 
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FIGURE 4.  Cumulative Hazard of MEP Turnover 

 
NOTE: Dashed lines represent 95% confidence intervals.  
 

D.  Transition Probabilities 

To estimate transition probabilities, we need to begin by specifying three pieces of information: a 

covariate profile, in what stage subjects begin the analysis, and finally, what starting time the analysis 

begins in.  For this application, we adopt naïve values for the latter two categories, specifying that the 

current stage is an MEP in office, and the starting time as 0, denoting that the MEP has just entered office 

for the first time.  Finally, for covariate profiles, we vary whether the MEP’s home country has a federal 

system or not, holding all other variables at their median values.  Figure 5 depicts the simulated transition 

probabilities and 95% confidence intervals.  As with each of the previous figures, we see MEPs from non-

federal countries have a higher probability of leaving office than MEPs federal countries.  Moreover, as 

with both the survival curves and cumulative hazards, this effect achieves statistical significance 

following an MEP’s first term in office, and loses statistical significance after an MEP’s fourth term. 
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FIGURE 5.  Transition Probabilities of MEP Turnover 

 
NOTE: Lines represent an MEP’s probability of leaving office by t.  All estimates begin with the current 
stage as MEP in office and s = 0.  Quantities computed using simulation.  Thin lines = 95% confidence 
intervals. 
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Appendix D: 
Command List: Duration Model Quantities 

Quick Reference Table 
KEY 

- = no 
X = yes 
Shaded cell = w/CIs or p-values 
Slashed cell = N/A 

 

 STATA R 

Quantity NP SP P NP SP P 
Duration-Based       

Absolute       
Mean/Expected Durat (E(t)) X X X X X X 
Median Durat (Q50(t)) X - X - - - 

Relative       
Time Ratio  - X  - X 
Marginal Effect  - X  - X 
First Difference  - X  X X 

Hazard-Based       
Absolute       

Hazard Rate (h(t)) X X X X X X 
Relative       

Hazard Ratio  X X  X X 
% Change in Hazard  X X  X - 

Miscellaneous       
Survivor (S(t)) X X X X X X 
Cumulative Hazard (H(t)) X X X X X X 
Transition Probabilities X X X X X X 

 
Note: this is not an exhaustive listing of duration-related commands, for either program.   
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Duration-Based Quantities (t) 
• Absolute Quantities 

o Mean/Expected Duration 
 Stata 

• Non-Parametric 
o CAPABLE?: Yes, with built-in functionality. 
o COMMAND: stci, rmean 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Reports the restricted mean.  Restricted mean also appears 

from stdescribe in “time at risk,” “mean” cell.  If no right-censored 
durations are present, restricted mean = true mean. 

• Semi-Parametric 
o CAPABLE?: Yes 
o COMMAND: coxed from Kropko and Harden (forthcoming) 
o P-VALS/CIS?: Yes 

• Parametric 
o CAPABLE?: Yes, with built-in functionality. 
o COMMAND: margins, at(COVAR VALUES) predict(mean time) 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Must first run streg.   

 R 
• Non-Parametric 

o CAPABLE?: Yes 
o COMMAND: Possible with the survfit function in the survival package. 

print(survfit(Surv(t , fail) ~ 1), print.rmean = TRUE) 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Also possible with rms2 in survRM2 package, which 

reports the restricted mean.  Primarily designed for comparing mean survival 
times across two subgroups of the data. 

• Semi-Parametric 
o CAPABLE?: Yes 
o COMMAND: coxed from Kropko and Harden (forthcoming) 
o P-VALS/CIS?: Yes 

• Parametric 
o CAPABLE?: Yes 
o COMMAND: mean_exp in the flexsurv package after estimating a 

parametric model using survreg in the survival package. 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: It is also possible to estimate a parametric model with 

survreg in the survival package, and then compute expected durations 
manually.   
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o Median Duration 
 Stata 

• Non-Parametric 
o CAPABLE?: Yes, with built-in functionality. 
o COMMAND: stci, median 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Also appears from stsum in the “Survival time,” “50%” cell.  

If S(t) never drops below 0.5, the median is considered undefined.  Do not use 
stdescribe to obtain the median duration.  It can produce incorrect 
answers, because stdescribe calculates the median the way we would for any 
random variable.  It finds the value of t for which half of the recorded t values are 
above and half below.  Doing so treats all the durations as observed even if they 
are censored in truth, which is a problem.  By contrast, the median duration is 
defined as the smallest value of t for which S(t) ≤ 0.5, which does acknowledge 
right-censored durations may exist. 

• Semi-Parametric 
o CAPABLE?: None currently known. 
o OTHER REMARKS: Possible to calculate manually by visually examining Cox 

model’s S(t) (see “Miscellaneous” > “Stata” > “S(t)” > “Semi-Parametric” in this 
appendix) and finding the smallest value of t for which S(t) ≤ 0.5.  If the model’s 
S(t) never drops below 0.5, the median is considered undefined. 

• Parametric 
o CAPABLE?: Yes, with built-in functionality. 
o COMMAND: margins, at(COVAR VALUES) predict(median time) 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Must first run streg.   

 R 
• Non-Parametric 

o CAPABLE?: None currently known. 
• Semi-Parametric 

o CAPABLE?: None currently known. 
o OTHER REMARKS: Possible to calculate manually by visually examining Cox 

model’s S(t) (see “Miscellaneous” > “R” > “S(t)” > “Semi-Parametric” in this 
appendix) and finding the smallest value of t for which S(t) ≤ 0.5.  If the model’s 
S(t) never drops below 0.5, the median is considered undefined. 

• Parametric 
o CAPABLE?: None currently known. 
o OTHER REMARKS: It is possible to estimate a parametric model with survreg 

in the survival package, and then compute median durations manually.   
• Relative Quantities 

o Time Ratio 
 Stata 

• Non-Parametric 
o CAPABLE?: N/A (no covariates in model, by definition) 

• Semi-Parametric 
o CAPABLE?: N/A; appropriate for models in accelerated failure time only. 
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• Parametric 
o CAPABLE?: Yes, with built-in functionality. 
o COMMAND: streg varlist, dist(name) tr  // tr = key 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Permissible option for AFT-capable parametric models only.  

p-values calculated from untransformed coefficients (𝛽𝐴𝐹𝑇, vs. exp(𝛽𝐴𝐹𝑇)) to 
avoid possible transformation-induced skew.34  

 R 
• Non-Parametric 

o CAPABLE?: N/A (no covariates in model, by definition) 
• Semi-Parametric 

o CAPABLE?: N/A; appropriate for models in accelerated failure time only. 
• Parametric 

o CAPABLE?: Indirectly, yes 
o COMMAND: Possible via aftreg function in the eha package. 

exp(coef(aftreg(function inputs here))) 
o P-VALS/CIS?: Yes (same p-values as untransformed AFT coefficients) 

o Marginal Effect 
 Stata 

• Non-Parametric 
o CAPABLE?: N/A.  (No covariates to calculate marginals for, by definition.) 

• Semi-Parametric 
o CAPABLE?: None currently known.  (Traditionally, appropriate for models in 

accelerated failure time only.) 
• Parametric 

o CAPABLE?: Yes, with built-in functionality. 
o COMMAND:  margins, dydx(x) at(VALUES) predict(QUANTITY) 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Must first run streg.  Appropriate for continuous covariates 

only.  For discrete, use first differences.  Permissible option for AFT-capable 
parametric models only.  Quantities = mean time or median time 

 R 
• Non-Parametric 

o CAPABLE?: N/A.  (No covariates to calculate marginals for, by definition.) 
• Semi-Parametric 

o CAPABLE?: Yes 
o COMMAND: coxsimInteract in the simPH package. 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Function primarily designed to estimate marginal effects for 

interaction terms in a model.  The simPH package (Gandrud 2015) is a flexible 
package capable of generating numerous post-estimation quantities for Cox 
models.  It generates CI estimates for all of its quantities of interest via 
simulation. 

                                                      
34 See Stata 14 [ST] manual, p. 251. 



38 
 

• Parametric 
o CAPABLE?: Yes 
o COMMAND: dydx in the margins package.  
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Function takes estimates from survreg in the survival 

package. 
o First Difference 
 Stata 

• Non-Parametric 
o CAPABLE?: N/A.  (No covariates to difference, by definition.) 

• Semi-Parametric 
o CAPABLE?: None known (Traditionally, appropriate for models in accelerated 

failure time only.) 
o OTHER REMARKS: Could indirectly calculate by generating the absolute-based 

quantity for multiple covariate profiles (see previous subsection), and then 
checking whether the profiles’ confidence intervals overlap at a given t.  

• Parametric 
o CAPABLE?: Yes, with built-in functionality. 
o COMMAND:  margins, at(x=(v/v+1) z=VALUES) predict(QUANTITY) /// 

  contrast(atcontrast(ar) pv)  
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Must first run streg.  Permissible option for AFT-capable 

parametric models only.  Quantities = mean time or median time 
 R 

• Non-Parametric 
o CAPABLE?: N/A.  (No covariates to calculate marginals for, by definition.) 

• Semi-Parametric 
o CAPABLE?: Yes 
o COMMAND: coxsimLinear in the simPH package. 
o P-VALS/CIS?: Yes  

• Parametric 
o CAPABLE?: Yes 
o COMMAND: dydx in the margins package. 
o P-VALS/CIS?: Yes  
o OTHER REMARKS: Function takes estimates from survreg in the survival 

package. 
  
Hazard-Based Quantities (h(t)) 

• Absolute Quantities 
o Hazard Rate 
 Stata 

• Non-Parametric 
o CAPABLE?: Yes, with built-in functionality. 
o COMMAND: ltable _t _d, noadj haz 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Can generate variable with sts gen, h, but will have no 

confidence intervals. 
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• Semi-Parametric 
o CAPABLE?: Indirectly, yes, through user-written package.   
o COMMAND:  mstsample, msfit (mstatecox package) 

   svmat tShoot_mstate, n(eqcol) 
   // relevant quantities now in _time, _outhaz 

o P-VALS/CIS?: No 
o OTHER REMARKS: See Metzger and Jones (2018) for full instructions on using 

mstatecox.  h(t) estimate from mstsample will be a step function, 
complements of the Cox’s semi-parametric nature.  (See, e.g., Box-Steffensmeier 
and Jones’ Figure 4.1 (2004, 66)).  Stata can plot a smoothed estimate of a Cox’s 
h(t) via stcurve with no confidence intervals. 

• Parametric 
o CAPABLE?: Yes, with built-in functionality. 
o COMMAND: predict, haz 
o P-VALS/CIS?: No 
o OTHER REMARKS: Must first estimate model with streg.  Can set specific 

covariate values for the prediction by (temporarily) overwriting the observed 
covariate values with those from the scenario of interest.  Can plot (without 
generating any variables) with stcurve, haz, but does not have the ability to 
plot confidence intervals.   

 R 
• Non-Parametric 

o CAPABLE?: Yes 
o COMMAND: coxsimLinear in the simPH package.  
o P-VALS/CIS?: Yes 

• Semi-Parametric 
o CAPABLE?: Yes 
o COMMAND: coxsimLinear in the simPH package.  
o P-VALS/CIS?: Yes 

• Parametric 
o CAPABLE?: Yes 
o COMMAND: summary.flexsurv() from the flexsurv package 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Use following the estimation of a parametric model using 

survreg in the survival package. 
• Relative Quantities 

o Hazard Ratio 
 Stata 

• Non-Parametric 
o CAPABLE?: N/A (no covariates in model, by definition) 

• Semi-Parametric 
o CAPABLE?: Yes, with built-in functionality. 
o COMMAND: stcox varlist, dist(name)  // no “nohr” option 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: p-values calculated from untransformed coefficients (𝛽𝐴𝐹𝑇, vs. 

exp(𝛽𝐴𝐹𝑇)) to avoid possible transformation-induced skew.34 
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• Parametric 
o CAPABLE?: Yes, with built-in functionality. 
o COMMAND: streg varlist, dist(name)  // no “time” or “nohr” 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Permissible option for PH-capable parametric models only.  

p-values calculated from untransformed coefficients (𝛽𝐴𝐹𝑇, vs. exp(𝛽𝐴𝐹𝑇)) to 
avoid possible transformation-induced skew.34 

 R 
• Non-Parametric 

o CAPABLE?: N/A (no covariates in model, by definition) 
• Semi-Parametric 

o CAPABLE?: Yes 
o P-VALS/CIS?: Yes 
o COMMAND: coxsimLinear in the simPH package.  
o OTHER REMARKS: Also appears by default in coxph model object, as 

exp(coef) column. 
• Parametric 

o CAPABLE?: Yes 
o COMMAND: WeibullReg in the SurvRegCensCov package.  
o P-VALS/CIS?: Yes 
o OTHER REMARKS: This command employs the survreg function from the 

survival package, and then simply converts the results into alternate 
parameterizations. 

o % Change in Hazard Rate 
 Stata 

• Non-Parametric 
o CAPABLE?: N/A.  (No covariates to calculate marginals for, by definition.) 

• Semi-Parametric 
o CAPABLE?: Indirectly, yes, with built-in functionality. 
o COMMAND: nlcom (exp(_b[x]*#)-1)*100 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Must estimate stcox first.  In code snippet, # = 1: increasing 

x by one unit; # = 2, increasing x by two units, etc. 
• Parametric 

o CAPABLE?: Indirectly, yes, with built-in functionality. 
o COMMAND: nlcom (exp(_b[x]*#)-1)*100 
o P-VALS/CIS?: Yes 
o OTHER REMARKS: Must estimate streg first.  In code snippet, # = 1: increasing 

x by one unit; # = 2, increasing x by two units, etc. 
 R 

• Non-Parametric 
o CAPABLE?: N/A (No covariates to calculate marginals for, by definition) 

• Semi-Parametric 
o CAPABLE?: Yes 
o COMMAND: coxsimLinear in the simPH package.  
o P-VALS/CIS?: Yes 

• Parametric 
o CAPABLE?: None currently known. 
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Miscellaneous 
• S(t) 

o Stata 
 Non-Parametric 

• CAPABLE?: Yes, with built-in functionality. 
• COMMAND: sts gen newvar, s  
• P-VALS/CIS?: Yes, with sts gen newvar, lb(s) and sts gen newvar, ub(s) 
• OTHER REMARKS: Can plot (without generating any variables) with sts graph, surv ci 

 Semi-Parametric 
• CAPABLE?: Yes, through user-written package. 
• COMMAND: survci, surv (survci package) 
• P-VALS/CIS?: Yes 
• OTHER REMARKS: Must first run stcox.  See Cefalu (2011) for instructions on 

using survci.  survci’s outfile option permits you to save multiple covariate 
profiles’ S(t)s and their CIs to variables in a new dataset.  Will only work with 
conventional standard errors (non-robust, no clusters).  stcurve can also plot the 
survivor from a Cox, but does not have the ability to plot confidence intervals.  For 
S(t) graphs after tvc(), albeit without confidence intervals, see Ruhe (2016). 

 Parametric 
• CAPABLE?: Indirectly, through user-written package. 
• COMMAND: predictms, survival ci gen(varname) (multistate package) 

  // varname_1_1 = the survivor 
  // varname_1_1_lci and _uci = confidence intervals 

• P-VALS/CIS?: Yes 
• OTHER REMARKS: See Crowther and Lambert (2017) for instructions on using 

multistate package.  CIs come from simulations.  Stata’s built-in functionality is 
capable of either plotting S(t) (stcurve, surv) or saving S(t) to a variable 
(predict, surv), but neither generates CIs. 

o R 
 Non-Parametric 

• CAPABLE?: Yes 
• COMMAND: survfit in the survival package.  
• P-VALS/CIS?: Yes 

 Semi-Parametric 
• CAPABLE?: Yes 
• COMMAND: survfit in the survival package.  
• P-VALS/CIS?: Yes 
• OTHER REMARKS: Must first run coxph.   

 Parametric 
• CAPABLE?: Yes 
• COMMAND: Use predict() following the estimation of a parametric model using 

survreg in the survival package. 
• P-VALS/CIS?: Yes 
• OTHER REMARKS: The predict()function can be used to generate several 

quantities of interest following estimation of a parametric survival model including 
the linear predictor.  Also possible with summary.flexsurv() from the 
flexsurv package following the estimation of a parametric model using survreg 
in the survival package 
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• H(t) 
o Stata 
 Non-Parametric 

• CAPABLE?: Yes, with built-in functionality. 
• COMMAND: sts gen newvar, na  
• P-VALS/CIS?: Yes, with sts gen newvar, lb(na) and sts gen newvar, 

ub(na) 
• OTHER REMARKS: Gives Nelson-Aalen estimate of cumulative hazard (the standard).  

Can plot (without generating any variables) with sts graph, na ci 
 Semi-Parametric 

• CAPABLE?: Yes, through user-written package. 
• COMMAND: survci, cumh (survci package) 
• P-VALS/CIS?: Yes 
• OTHER REMARKS: Must first run stcox.  See Cefalu (2011) for instructions on 

using survci.  survci’s outfile option permits you to save multiple covariate 
profiles’ H(t)s and their CIs to variables in a new dataset.  Will only work with 
conventional standard errors (non-robust, no clusters).  stcurve can also plot the 
cumulative hazard from a Cox, but does not have the ability to plot confidence 
intervals.   

 Parametric 
• CAPABLE?: Yes, with built-in functionality. 
• COMMAND: stcurve, cumh 
• P-VALS/CIS?: No 
• OTHER REMARKS: Graphs only.  Must first run streg.  Can also obtain H(t) 

(without CIs) indirectly via S(t) (predict, surv), since H(t) = -ln(S(t)). 
o R 
 Non-Parametric 

• CAPABLE?: Yes 
• COMMAND: survfit in the survival package.  
• P-VALS/CIS?: Yes 

 Semi-Parametric 
• CAPABLE?: Yes 
• COMMAND: survfit in the survival package.  
• P-VALS/CIS?: Yes 

 Parametric 
• CAPABLE?: Yes 
• COMMAND: Use summary.flexsurv() from the flexsurv package following 

the estimation of a parametric model using survreg in the survival package. 
• P-VALS/CIS?: Yes 
• OTHER REMARKS: Confidence intervals generated via simulation.  
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• Transition Probabilities 
o Stata 
 Non-Parametric 

• CAPABLE?: Yes, through one of two user-written packages. 
• COMMAND: predictms (multistate package) --OR-- 

    mstsample (mstatecox package) 
• P-VALS/CIS?: Yes 
• OTHER REMARKS: See Crowther and Lambert (2017) for instructions on using 

multistate package; Metzger and Jones (2018) for full instructions on using 
mstatecox.  CIs come from simulations for both packages.   

 Semi-Parametric 
• CAPABLE?: Yes, through user-written package. 
• COMMAND: mstsample (mstatecox package) 
• P-VALS/CIS?: Yes 
• OTHER REMARKS: See Metzger and Jones (2018) for full instructions on using 

mstatecox.  CIs come from simulations.   
 Parametric 

• CAPABLE?: Yes, through user-written package. 
• COMMAND: predictms (multistate package) 
• P-VALS/CIS?: Yes 
• OTHER REMARKS: See Crowther and Lambert (2017) for instructions on using 

multistate package.  CIs come from simulations.   
o R 
 Non-Parametric 

• CAPABLE?: Yes 
• COMMAND: probtrans following the use of msfit to generate cumulative 

hazards.  Both commands located in the mstate package.  The first step is to 
estimate a non-parametric model via coxph in the survival package.  

• P-VALS/CIS?: Yes 
• OTHER REMARKS: Measures of uncertainty can be generated either via analytical 

calculation, or through included bootstrap functionality, or simulation. 
 Semi-Parametric 

• CAPABLE?: Yes 
• COMMAND: probtrans following the use of msfit to generate cumulative 

hazards.  Both commands located in the mstate package.  The first step is to 
estimate a semi-parametric model via coxph in the survival package.  

• P-VALS/CIS?: Yes 
• OTHER REMARKS: Measures of uncertainty can be generated either via analytical 

calculation, the included bootstrap functionality, or simulation. 
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 Parametric 
• CAPABLE?: Yes 
• COMMAND: Use msfit.flexsurv() from the flexsurv package following 

the estimation of a parametric model using survreg in the survival package.  
This will generate cumulative hazards analogous to msfit in the mstate package.  
The resulting object is then compatible with mstate, and therefore, the 
probtrans command in mstate can be used to estimate transition probabilities 
from the original parametric estimates. 

• P-VALS/CIS?: Yes 
• OTHER REMARKS: As probtrans in mstate is being used to estimate transition 

probabilities, measures of uncertainty can be generated either via analytical 
calculation, through the included bootstrap functionality, or simulation. 
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Appendix E: 
Toy Examples from Simulated Data 

 
Situation #1: β vs. Predicted Quantity 

TABLE 3.  Ex. #1, Estimates 
 
 Weibull 

x 0.310** 
(0.147) 

Constant 0.700*** 
(0.168) 

Shape (p) 0.561*** 
(0.031) 

N 200 
Nfail 200 

Log-Likelihood -476.786 
* = p ≤ 0.10, ** = p ≤ 0.05, 
*** =  p ≤ 0.01, two-tailed tests.  

 

FIGURE 6.  Ex. #1, First Differences 

  

Error distributed Type I Extreme Value (minimum), making Weibull the true DGP.  Data generated in AFT.  N = 200 and none of 
the data points are censored.  x ~N(0,1). 
 

While it may be rare for βs to show significance when there is truly no effect, it can happen.  In 

our first toy example, we generate Weibull data where x’s effect is 0, in truth.  We then estimate a 

Weibull model with x included as a covariate (Table 3).  At conventional levels of significance, the table 

alone suggests x’s effect is statistically different from 0, with a two-tailed p-value of 0.036.  However, 

when we generate predicted quantities using Table 3’s estimates, a different picture emerges (Figure 

6Error! Reference source not found.).  We calculate the first difference in both the predicted mean and 

median when we increase x’s value from 0 (its mean) to 1.35  Neither first difference is statistically 

                                                      
35 This one-unit change also happens to correspond to a one-standard deviation change in x’s value, given how we 

generated x: x ~N(0,1).   
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different from zero, indicated by the 95% confidence intervals including zero (p-values = ~0.072).  Had 

we only used the coefficients to assess our hypothesis, we would have drawn an incorrect conclusion. 

 

Situation #2: Measures of Uncertainty 

In our second toy example (Figure 7), we estimate a Cox semi-parametric duration model to 

assess whether x affects the event’s occurrence and generate predicted quantities from this model.36  From 

Figure 7’s left panel, we would conclude increasing x’s value produces an increase in the survivor 

function’s value.  Substantively, it implies higher x values make the event’s occurrence less likely at a 

given time point, since higher values of S(t) mean more subjects are still at risk of the event at time t.  

However, when we properly acknowledge the estimates’ uncertainty, we see a change in x has no 

statistically significant effect (right panel).  The two scenarios’ 95% confidence intervals overlap.   

The phrase “statistically significant” is important.  The Cox model estimates alone suggest x’s 

effect is statistically different from zero.  In truth, we know x does indeed have a non-zero effect on t 

because we generated these fake data.  That non-zero effect, in turn, would produce a non-zero effect on 

S(t)’s values.  We like this toy example because it highlights a related point: an effect may exist, but we 

must have enough data for our estimates to be sufficiently precise, given the effect’s size and other 

sources of uncertainty in the model.  Here, because of our sample’s size (n = 500), we cannot conclude 

with confidence that the two predictions are statistically different.  If we had data on more subjects, all 

else equal, the confidence intervals would be smaller.37  Eventually, with a large enough sample the 

confidence intervals would not overlap at all, leading us to make (what we know to be, in this case) the 

‘correct’ conclusion: x’s effect is indeed non-zero. 

                                                      
36 The true DGP is at the bottom of Figure 7’s graphs.  
37 The same would be true if the model had less overall uncertainty, such as a smaller stochastic element.  Practically 

speaking, though, researchers have little control over the amount of model uncertainty.  Some uncertainty may be a 

product of the inherent process under study, if the process is stochastic; researchers cannot modify a true DGP in 

real life.  In relative terms, by contrast, sample size is more within a researcher’s realm of control. 
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FIGURE 7.  Toy Example #2, S(t) 
(a) No CIs 

 

(b) CIs 

 
Error distributed Type I Extreme Value (minimum), making Weibull the true DGP.  Data generated in AFT.  N = 500, x ~N(0,1), z ~N(0,1), 
Corr(x,z) = 0.25, and none of the data points are censored. 
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