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A Monte Carlo Numerical Results

A.1 Homogenous Clustersa

AMSE Rejection Rates
# Clusters rb

v CRSE CESE2 CRSE CESE2

12 0.1 -0.0406 0.0331 13.3 4.35
0.5 -0.0572 0.0236 12.6 3.81

24 0.1 -0.054 0.0165 11.6 5.03
0.5 -0.058 0.0114 11.3 4.86

48 0.1 -0.025 0.007 8.64 4.85
0.5 -0.036 0.003 8.59 4.81

72 0.1 -0.016 0.005 7.05 5.23
0.5 -0.02 0.002 7.36 5.24

96 0.1 -0.019 -0.006 6.81 5.29
0.5 -0.024 -0.011 6.52 5.65

a. Explanatory variables and stochastic terms drawn
from identical distributions.

b. rv is the expected within cluster stochastic term
correlation.
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A.2 Heterogeneous Explanatory Variables

Average Mean Standardized Error
Homo., Normal Hetero., Expon.

G covariance CRSE CESE2 CRSE CESE3
clusteringa

12 0.0 -0.081 0.016 -0.120 0.008
0.3 -0.210 0.003 -0.253 -0.028
0.6 -0.312 -0.013 -0.353 -0.057
0.9 -0.396 -0.030 -0.437 -0.087

24 0.0 -0.064 0.012 -0.092 0.007
0.3 -0.084 -0.001 -0.120 -0.017
0.6 -0.179 -0.005 -0.218 -0.036
0.9 -0.270 -0.009 -0.309 -0.049

48 0.0 -0.026 0.005 -0.051 -0.004
0.3 -0.055 0.006 -0.090 -0.014
0.6 -0.100 0.006 -0.145 -0.026
0.9 -0.134 0.001 -0.180 -0.034

72 0.0 -0.015 0.012 -0.042 -0.003
0.3 -0.050 -0.001 -0.070 -0.008
0.6 -0.073 -0.002 -0.102 -0.017
0.9 -0.090 0.000 -0.123 -0.019
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A.2 Heterogeneous Explanatory Variables, Cont.

Rejection Rates, α = 0.05
Homo., Normal Hetero., Expon

G covariance CRSE CESE2 CRSE CESE3
clusteringb

12 0.0 15.00 4.80 12.78 4.14
0.3 28.16 5.88 26.24 6.88
0.6 43.00 8.01 38.38 9.49
0.9 50.70 11.14 46.63 12.88

24 0.0 11.90 4.64 10.36 4.46
0.3 11.50 4.69 9.53 4.98
0.6 18.96 5.85 15.95 6.71
0.9 29.41 7.31 25.12 8.72

48 0.0 7.49 4.73 6.87 5.07
0.3 9.75 4.98 8.50 5.43
0.6 13.11 5.52 12.07 6.07
0.9 15.88 6.17 13.66 6.90

72 0.0 7.10 4.50 6.55 4.68
0.3 8.57 5.31 7.37 5.34
0.6 10.04 5.32 8.59 5.76
0.9 12.00 5.53 9.53 6.25

a. Average between variance/total variance.
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A.3 CESE with Different Stochastic Term Distributions

Average Mean Standardized Error
Homoskedastic Heteroskedastic

G covariance Normal χ2 Expon Normal χ2 Expon
clusteringb

12 0.0 0.016 0.040 -0.008 0.029 0.034 0.008
0.3 0.002 -0.017 -0.030 0.009 0.003 -0.028
0.6 -0.013 -0.038 -0.056 -0.012 -0.028 -0.057
0.9 -0.030 -0.059 -0.080 -0.036 -0.062 -0.087

24 0.0 0.012 0.005 0.001 0.020 0.010 0.007
0.3 -0.001 -0.006 -0.008 0.019 -0.005 -0.017
0.6 -0.005 -0.013 -0.019 0.004 -0.014 -0.036
0.9 -0.009 -0.019 -0.032 -0.012 -0.026 -0.049

48 0.0 0.005 0.001 0.001 0.012 0.007 -0.004
0.3 0.006 -0.005 -0.006 0.000 -0.013 -0.014
0.6 0.006 -0.006 -0.011 -0.008 -0.017 -0.026
0.9 0.001 -0.006 -0.015 -0.012 -0.021 -0.034

72 0.0 0.012 -0.004 -0.006 0.007 0.004 -0.003
0.3 -0.001 -0.007 -0.017 0.009 -0.004 -0.008
0.6 -0.002 -0.009 -0.019 0.003 -0.006 -0.017
0.9 0.000 -0.009 -0.019 0.001 -0.006 -0.019
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A.3 CESE with Different Stochastic Term Distributions, Cont.

Rejection Rate, α = 0.05
Homoskedastic Heteroskedastic

G covariance Normal χ2 Expon Normal χ2 Expon
clusteringa

12 0.0 4.80 4.77 4.97 4.32 3.94 4.14
0.3 5.88 6.50 7.11 6.10 6.25 6.88
0.6 8.01 9.17 9.96 8.96 9.18 9.49
0.9 11.14 12.87 13.67 12.54 12.74 12.88

24 0.0 4.64 4.38 4.88 4.32 4.39 4.46
0.3 4.69 5.31 5.31 4.96 5.19 4.98
0.6 5.85 6.38 6.79 6.27 6.74 6.71
0.9 7.31 8.16 8.53 8.16 8.68 8.72

48 0.0 4.73 4.61 5.09 5.05 4.77 5.07
0.3 4.98 5.15 4.99 5.24 5.24 5.43
0.6 5.52 5.72 5.79 5.92 5.79 6.07
0.9 6.17 6.32 6.79 6.36 6.41 6.90

72 0.0 4.50 5.13 4.77 4.80 4.42 4.68
0.3 5.31 5.27 5.17 4.44 4.80 5.34
0.6 5.32 5.52 5.48 5.10 5.15 5.76
0.9 5.53 5.92 5.99 5.65 5.74 6.25

a. Average between variance/total variance.
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A.4 Error Term Interdependence w/ Heterogeneous Clusters,
Homoskedastic Error Termsa

rb
v

# Clusters 0.10 0.50 0.75

AMSE
12 0.001 -0.013 -0.018
24 0.004 -0.005 -0.007
48 0.010 0.006 0.003
72 -0.002 -0.002 -0.001
96 0.001 0.001 -0.000

Rejection Rate
12 6.76 8.01 8.65
24 5.53 5.85 5.96
48 5.30 5.52 5.48
72 5.56 5.32 5.31
96 5.31 5.19 5.07

a. Covariate clustering equals 0.6.
b. rv is the expected within cluster

error term correlation.
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A.5 Bootstrapping

Scenario
# Clusters A B C D E

AMSE
12 -0.054 -0.068 -0.087 -0.107 -0.101
24 0.000 -0.033 -0.112 -0.115 -0.106
48 -0.022 -0.015 -0.073 -0.087 -0.085
72 -0.019 -0.008 -0.046 -0.061 -0.061

Rejection Rates
12 11.44 12.30 11.24 10.44 11.34
24 8.20 9.02 12.24 9.76 9.50
48 7.70 7.04 11.60 9.60 10.18
72 6.94 6.20 8.22 8.18 8.06

Scenarios:
A. Homogenous clusters, homoskedastic normal errors.
B. Scenario A with unequal # of observations per cluster.
C. Scenario B with covariate clustering equal 0.6.
D. Scenario C with heteroskedastic errors.
E. Scenario C with χ2 distributed errors.

7



B Variations in # of Clusters and Sample Size

The simulations with heterogeneous clusters all use the same distribution of numbers of obser-

vations per cluster, e.g. five, ten and fifteen in equal proportions. A consequence of this design is

that the total sample size increases as the number of clusters increases, with N = ∑
G
g=1 ng = 10G.

Eq. 22 implies that CRSE performance varies with G but not with N, which is consistent with

MacKinnon and Webb (2017, fn. 3, p. 237) and Esarey & Menger (2018). The latter attribute this

condition to the fact that, “...the center summation [in eq. 6] happens over the number of clusters G

and not over the number of observations N.” If this statement is correct it should apple to the CESE

as well, making all of the simulation results responsive to the changing numbers of clusters, but

not to the fact that N is also increasing. This appendix reports some simulation results examining

this prediction.

The examination expands the number of observations per cluster in the simulations with twelve

clusters to create samples with N = 480. This means that clusters now have either twenty, forty

or sixty observations. In the simulations the values for X in the additional observations are simply

duplicated from the original sample to expand the size of the clusters. The advantage of this

method is that it guarantees that the distributions of the explanatory variables both within and

across clusters are identical to those in the first simulations.1

The simulations are done with homoskedastically normally distributed stochastic terms, as

in the left panel of Fig. 2.2 Fig. B.1 and Table B.1 show the results for the original and new

simulations with both the CRSE and CESE methods. The results of the simulations with G =

48,N = 480 are also shown. The results show little difference in the simulations with N = 120

and N = 480. (The results for N = 120 and G = 48 are taken from Table A.2, column 2.) The

performance with N = 480 when G = 12 for both methods is actually slightly worse. The average

1Simulations were also done with a new random sample of values for X drawn from the same
distributions as the original X . The simulation results are identical to the third significant digit.

2As in figure 2 the CESE results use the hc2 adjustment.
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mean standardized errors (amse) are about -0.03 more negative for the CRSE and -0.02 more

negative for the CESE while the rejection rates average three percent higher for the CRSE and one

percent higher for the CESE method. The performance plots with G = 48 but the same number of

observations, N = 480 demonstrate increasing the numbers of clusters substantially improves the

methods’ performance, particularly for the CRSE.

Collectively the evidence is consistent with the initial propositions that it is the number of clus-

ters, G, not the total sample size, N, that affects the performance of the methods. This conclusion

means that the evidence from all the simulations varying the number of clusters is credible even

though the total sample size is increasing as the number of clusters increases.
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Fig. B.1: Comparing Different Sample Sizes with G = 12
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Covariate AMSE Rej. Rate
Clustering CRSE CESE CRSE CESE
0.0 -0.103 -0.012 14.84 4.86
0.3 -0.252 -0.017 32.59 7.59
0.6 -0.343 -0.026 48.60 10.04
0.9 -0.409 -0.036 53.57 12.39

Table B.1: CRSE & CESE with G = 12 & N = 480

10



C Standard Errors with Clustered Data: An Alternative Esti-
mator

This appendix presents and evaluates an alternative way of estimating the cluster error term

variance-covariance matrix. This method is from Baltagi and Chang (1994) based on a paper by

Swamy and Arora (1972), denoted as the BCSE method. Their method models Vgi as a cluster

specific random effect plus an observation specific stochastic term, Vgi =Ug + εgi . Their estimate

for Σg assumes homogeneity for all stochastic terms, σ2
vgi

= σ2
v = σ2

u +σ2
ε and ρgi j = ρ = σ2

u , for

all g, i and j.

C.1 Baltagi-Chang Method for Estimating Σg

The BCSE method uses residuals from a combination of within and between group OLS re-

gressions to estimate σ2
u and σ2

ε . The residuals from a regression of group mean centered variables,

the within regression, which eliminates Ug estimates σ2
ε . Write this equation as,

ygi = Ygi− Ȳg = Xgiβ +Ug + εgi− (X̄gβ +Ug + ε̄g) = x∗gi
β
∗+(εgi− ε̄g), (1)

where x∗gi
excludes variables that do not vary within clusters, such as a country having a parlia-

mentary or presidential system. This regression gives unbiased and consistent estimates for β ∗.3

Denote the residuals from estimating eq. 1 as ẽ. Baltagi and Chang (1994) propose the following

estimate for σ2
ε ,

σ̂
2
ε =

∑
G
g=1 ∑

ng
i=1 ẽ2

gi

(N−G−K∗)
=

tr(ẽẽ
′
)

(N−G−K∗)
, (2)

where K∗ is the number of variables in x∗gi
.

In their second step Baltagi and Chang (1994) use the residuals from a weighted between

groups regression Ȳg = X̄gβ̄ +Ug + ε̄g to estimate σ2
u . The weights are the number of observations

3These estimates for β ∗ are not efficient because the presence of ε̄g in the error term for each observation means the
stochastic terms in the within regression are not independent within clusters as E[(εgi− ε̄g)(εg j− ε̄g)i 6= j =−σ2

ε /ng 6= 0.
Also, with unbalanced panels where ng varies by group the stochastic terms are heteroskedastic even when σ2

ε is
identical for all clusters.
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within each group, ng, so that b̄ =
[
∑

G
g=1(ngX̄

′
gX̄g)

]−1 [
∑

G
g=1(ngX̄

′
gȲg)

]
. Their estimate for σ2

u uses

the following notation; ιg is a ng x 1 column vector of ones, Zg = ιgι
′
g, and Wg = (1/ng)Zg. Create

the block diagonal matrices Z and W where the blocks are Zg and Wg respectively. The weighted

sum of squared residuals from the between regression is e∗
′
We∗, where e∗ = Ȳ − X̄ b̄. From the

expected value of e∗
′
We∗ the estimate for σ2

u is,

σ̂
2
u =

e∗
′
We∗− (G−K)σ̂2

ε

N− tr[(X ′WX)−1X ′ZZ ′X ]
. (3)

The terms calculated in eqs. 2 and 3 are then used to form Σ̂v to estimate the coefficient standard

errors,

Σ̂b = Sb = (X
′
X)−1

[
G

∑
g=1

(X
′
gΣ̂gXg)

]
(X
′
X)−1. (4)

C.2 Monte Carlo Experiments Comparing BCSE and CESE

Fig. C1 and Table C1 compare the BCSE and CESE performance for the Monte Carlo sim-

ulations shown in Fig. 2 for homogeneously normally and heteroskedastically exponentially dis-

tributed errors. These plots show that in most of the experiments CESE perform better than do

BCSE. The differences favoring CESE increase strongly as the number of clusters and the amount

of covariate clustering decrease. For example with twelve clusters and no to moderate covariate

clustering the BCSE amse is -0.02 to -0.03 more negative than is the CESE amse and the BCSE

rejection rates are two to three percent higher. With forty-eight clusters and moderate to high co-

variate clustering the amse differences are -0.015 or less and the differences in rejection rates range

from -0.4 to 0.7 percent. With seventy two clusters CESE is slightly better with no covariate clus-

tering. With moderate to high covariate clustering there is virtually no difference in performance.

With a larger number of clusters and a high degree of covariate clustering the choice is largely one

of computational convenience.
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AMSE Rejection Rates, α = 0.05
G covariance Homo, Normal Hetero, Expon Homo, Normal Hetero, Expon

clusteringa BCSE CESE2 BCSE CESE3 BCSE CESE2 BCSE CESE3

12 0.0 -0.016 0.016 -0.028 0.008 6.34 4.80 6.04 4.14
0.3 -0.020 0.003 -0.045 -0.028 8.68 5.88 10.42 6.88
0.6 -0.031 -0.013 -0.068 -0.057 10.30 8.01 12.63 9.49
0.9 -0.043 -0.030 -0.086 -0.087 11.64 11.14 14.07 12.88

24 0.0 -0.016 0.012 -0.024 0.007 5.92 4.64 5.99 4.46
0.3 -0.016 -0.001 -0.028 -0.017 6.30 4.69 6.99 4.98
0.6 -0.016 -0.005 -0.035 -0.036 6.84 5.85 7.85 6.71
0.9 -0.019 -0.009 -0.049 -0.049 7.35 7.31 8.23 8.72

48 0.0 -0.018 0.005 -0.018 -0.004 5.49 4.73 5.17 5.07
0.3 -0.009 0.006 -0.020 -0.014 5.49 4.98 6.03 5.43
0.6 -0.007 0.006 -0.023 -0.026 5.95 5.52 6.49 6.07
0.9 -0.007 0.001 -0.026 -0.034 5.79 6.17 6.35 6.90

72 0.0 -0.009 0.012 0.004 -0.003 5.28 4.50 5.41 4.68
0.3 -0.001 -0.001 -0.017 -0.008 5.25 5.31 5.58 5.34
0.6 -0.001 -0.002 -0.022 -0.017 5.29 5.32 5.89 5.76
0.9 -0.003 0.000 -0.022 -0.019 5.64 5.53 5.74 6.25

a. Average between variance/total variance.

Table C1: BCSE and CESE Comparisons
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D Bootstrapping Variations with # of Replications and Random Seed

Replicating the Brown, et al. and Harden equations illustrates that bootstrapping results are

sensitive to the random number seed and the number of replications. The initial replication used the

seed 441022 used to generate the explanatory variables in the simulations and 1000 replications

as used by Harden. Three additional alternative seeds are used and the number of replications

extended to 50,000.4 Table D.1 reports the p-values testing the null hypothesis that the Liberal

Control coefficient is zero. These values range from 0.037 to 0.056 with 1,000 replications. Even

with 10,000 replications the p-values range from 0.048 to 0.053. Only with 50,000 replications do

the p-values become consistent, ranging from 0.050 to 0.052. There are two important lessons here.

The first is that in practice bootstrap users should be careful to use a large number of replications,

or at least explore the sensitivity of the results to the number of replications and starting seed.

These results also point out the fragility of relying on preset confidence intervals and p-values, as

done using coefficient and marginal effects plots, to report results. This procedure is both sensitive

to arbitrary choices made during the analysis and susceptible to manipulation to get desired results.

As Wasserstein, et al. (2019) argue, better to present estimated standard errors and if necessary

the continuous p-values derived from those standard errors and distribution assumptions.

Random Number Seed
Reps 441022 8623 813 13579

1,000 0.037 0.056 0.046 0.040
2,000 0.043 0.054 0.053 0.042
4,000 0.046 0.048 0.053 0.049
5,000 0.049 0.050 0.054 0.048

10,000 0.053 0.049 0.053 0.048
50,000 0.052 0.052 0.052 0.050

Table D.1: Liberal Control Coefficient p-Values

4The original seed, 441022, is the last six digits of the number of shares traded on the NYSE on August 9, 2016;
the seed 8623 is the last four digits of the U. S. national debt on Feb. 7, 2006; 813 are my favorite numbers; and 13579
are obviously the series of odd digits.
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