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Appendix A Derivation of Confidence Interval in Propo-
sition 4

Note that from (13), βbi = bi(w1, θ) + ebi , where the residual ebi has mean 0.

For the district level parameter, the residuals can be averaged out over many precincts

due to the central limit theorem and we can get a potentially useful conservative confi-

dence interval, without modeling the variance of the residuals:

B =
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NiXiβ
b
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b
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The unidentified parameter w1 ∈ [wl, wu].

Therefore B ∈ [BL(θ), BU(θ)], where

BL(θ) ≡
∑

iNiXie
b
i∑

iNiXi
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∑
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.
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Here wl, wu depend linearly on θ ≡ (w0, c1, d1). The bi(0, θ) ≡ b0i + (b1i )
T θ ≡

0 + (1, 1, Xi)(w0, c1, d1)
T also depends linearly on θ ≡ (w0, c1, d1), which is estimated

by quadratic regression (20) as θ̂ ≡ (ŵ0, ĉ1, d̂1), with robust asymptotic variance matrix

V = âvar(θ̂) based on a sandwich formula.1

Denote the first term in BL(θ) or BU(θ) as

TERM1 =

∑
iNiXie

b
i∑

iNiXi

.

Then E(TERM1) = 0. Assuming independent precincts, then the first term TERM1

has asymptotic variance V ar(TERM1) =
∑

i

(
NiXi∑
iNiXi

)2
var(ebi |Ni, Xi). Note that

var(ebi |Ni, Xi) = var(βbi |Ni, Xi), where βbi is a proportion valued in [0, 1]. The variance

of a bounded random variable in [a, b] is at most [(b−a)/2]2. Therefore, var(βbi |Ni, Xi) ≤

(1/2)2 and V ar(TERM1) ≤
∑

i

(
NiXi(1/2)∑

iNiXi

)2
. Therefore, we know that the asymptotic

standard error of the first term is bounded above by

sd(TERM1) ≤ S1 = (1/2)

√√√√ p∑
i=1

(
NiXi∑p
i=1NiXi

)2

.

Now wl = wl(θ) is of the form maxJj=1{gl0j + glTj θ} for some constant vectors glj;

wu = wu(θ) is of the form minJj=1{gu0j + guTj θ}, for some constant vectors guj . Denote

r ≡
∑

iNiXi(1−Xi)∑
iNiXi

, h0 ≡
∑

iNiXib
0
i∑

iNiXi
, h ≡

∑
iNiXib

1
i∑

iNiXi
.

Then

BL(θ) = TERM1 +

∑
iNiXi(b

0
i + (b1i )

T θ)∑
iNiXi

−
J

min
j=1
{gu0j + guTj θ}r

= TERM1 + h0 + hT θ −
J

min
j=1
{gu0j + guTj θ}r.

We can write BL(θ) = maxJj=1{BLj} where BLj = TERM1 + h0 − rgu0j + (h −

rguj)
T θ. Similarly, we can write BU(θ) = minJj=1{BUj} where BUj = TERM1 +h0−

rgl0j + (h− rglj)T θ.

Now define

B̂L =
J

max
j=1
{B̂Lj}, (1)

1See, e.g., https://www.stata.com/manuals/p_robust.pdf
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where B̂Lj = h0 − rgu0j + (h− rguj)T θ̂;

B̂U =
J

min
j=1
{B̂Uj}, (2)

where B̂Uj = h0 − rgl0j + (h− rglj)T θ̂.

[It can be verified that in the previous notation of (21), we have B̂L = B(wl(θ̂), θ̂)

and B̂U = B(wu(θ̂), θ̂). ]

Note that

B̂Lj −BLj = −TERM1 + (h− rguj)T (θ̂ − θ);

B̂Uj −BUj = −TERM1 + (h− rglj)T (θ̂ − θ).

By an asymptotic normality argument, B̂Lj ≈ N(BLj, sl
2
j ) where slj ≤ SLj ≡ S1 +√

(h− rguj)TV (h− rguj); B̂Uj ≈ N(BUj, su
2
j) where suj ≤ SUj ≡ S1+

√
(h− rglj)TV (h− rglj),

for all j = 1, ..., J . Assuming V is of order Op(1/p), then all SUj and SLj’s are also of

order Op(1/
√
p). The sample variations B̂Uj − BUj and B̂Lj − BLj are also of order

Op(1/
√
p).

Now consider various cases of the boundB ∈ [BL(θ), BL(θ)]. Assume thatNiXi(1−

Xi) is not almost surely 0, then the large sample limit of the sensitivity parameter BU(θ)−BL(θ)
wu(θ)−wl(θ) =

r =
∑

iNiXi(1−Xi)∑
iNiXi

is a positive number due to the law of large numbers. Assume that

wu(θ) 6= wl(θ) (and thereforeBU(θ) 6= BL(θ)). Thenw1 can be close (withinOp(1/
√
p))

to only one of the end points of [wl(θ), wu(θ)], and consequently B can be close to only

one end point of [BL(θ), BU(θ)]. Without loss of generality we assume that B is close

to BL(θ). (The other possibility would be similar.) Assume that the minimizing entry

of wu = minJj=1{gu0j + guTj θ} is unique and not tied with the other entries. Then the

maximizing entry BL(θ) = maxJj=1{BLj} is unique and has an order-1 gap from the

other entries, that is greater than Op(1/
√
p), which is the order of all (B̂Uj −BUj)’s and

(B̂Lj − BLj)’s. Therefore maxJj=1{B̂Lj} (= B̂L) and maxJj=1{BLj} (= BL(θ)) are

achieved at a same j, with probability tending to 1 as p→∞. We will call this same j as

ĵ. Then

B̂L = B̂Lĵ = BLĵ + (B̂Lĵ −BLĵ)

= BL(θ) + (B̂Lĵ −BLĵ)
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where the last term is asymptotically normal and of order Op(1/
√
p).

There is a similar equation relating B̂U to BU(θ). These imply that the B̂U is close

to BU(θ).

Since we have assumed that B is only close to one end point BL(θ), and not close to

BU(θ), then B must not be close to B̂U or B̂U +u′ either, for any u′ of order Op(1/
√
p).

Then we have P (B > B̂U + u′) converges to 0. Then P (B 6∈ [B̂L − l′, B̂U + u′]) ≈

P (B < B̂L− l′) ≈ P (B < BL(θ)− l′ + (B̂Lĵ −BLĵ)) ≤ P (l′ < (B̂Lĵ −BLĵ)) since

B > BL(θ). Then P (l′ < (B̂Lĵ − BLĵ)) ≈ Φ(−l′/slĵ) ≤ Φ(−l′/SLĵ) = Φ(−x) if

we take l′ = xSL. Setting u′ = xSU of order Op(1/
√
p) leads to an approximate upper

bound of P (B 6∈ [B̂L− l′, B̂U + u′]) being 1− Φ(−x) = Φ(x) (for large p). Q.E.D.

Remark 1. The coverage probability of CIx can be improved to 1, if we have w1 lying

in the interior of the bound (wl, wu). This would allow any x > 0 to be used in find-

ing a confidence interval. However, the condition on w1 cannot be checked due to its

non-identifiability. The tie-breaking conditions that we assumed about the identified θ,

however, can be checked by data. Then we can, e.g., use x = 1 and achieve coverage

probability at least Φ(x) ≈ 84%, or use x = 1.282 and achieve at least 90% coverage

probability.

Appendix B Non-emptiness of CI0

In this Appendix B, we prove in the large p limit that when model assumptions hold, CI0

should be nonempty.

By tracing the definition of CI0 and applying the Law of Large Numbers, we find that

in the large sample limit

CI0 = [ inf
v1∈[wlj ,wuj ]

B(v1, θ), sup
v1∈[wlj ,wuj ]

B(v1, θ)] ∩DD,

where DD denotes the larges sample limit of the DD bound,

B(v1, θ) = E{NiXi[(w0 + c1 + d1Xi) + v1(Xi − 1)]}/E{NiXi}

as summarized in (16) and (17) before, and [wlj, wuj], j ∈ {1, 2, 3} indicate the bound

of w1 to be used according to the jth Proposition.

3



Proposition 1. (Non-emptiness of CI0.) For j ∈ {1, 2, 3}, assume linear contextual effects

E(βwi |Xi, Ni) = w0 + w1Xi and E(βwi |Xi, Ni) = b0 + b1Xi, and let [wlj, wuj] indicate

the bound of w1 to be used according to the jth Proposition. Define in the large sample

limit

CI0 = [ inf
v1∈[wlj ,wuj ]

B(v1, θ), sup
v1∈[wlj ,wuj ]

B(v1, θ)] ∩DD,

where

DD = [E[Ni max{0, Ti − (1−Xi)}]/E(NiXi), E[Ni min{Ti, Xi}]/E(NiXi)],

and

B(v1, θ) = E{NiXi[(w0 + c1 + d1Xi) + v1(Xi − 1)]}/E{NiXi},

where c1, d1 follow (7).

Then CI0 is nonempty.

Proof:

B(v1, θ) = E{NiXi[(w0 + c1 + d1Xi) + v1(Xi − 1)]}/E{NiXi}

= E{NiXi[(w0 + c1Xi + d1X
2
i − (w0 + v1Xi)(1−Xi)]/Xi}/E{NiXi}

= E{NiXi[(Ti − (w0 + v1Xi)(1−Xi)]/Xi}/E{NiXi}

= E{NiXi[β
b
iXi + βwi (1−Xi)− (w0 + v1Xi)(1−Xi)]/Xi}/E{NiXi}

= E{NiXi[β
b
iXi + (w0 + w1Xi)(1−Xi)− (w0 + v1Xi)(1−Xi)]/Xi}/E{NiXi}

= E{NiXi[β
b
i + (w1 − v1)(1−Xi)}/E{NiXi}

≡ B + (w1 − v1)r.

where we denote r = E{NiXi(1 − Xi)}/E{NiXi} and B = E{NiXiβ
b
i }/E{NiXi}.

Then

CI0 = [B + (w1 − wuj)r, B + (w1 − wlj)r] ∩DD.

On the other hand, the jth Proposition implies that

w1 ∈ [wlj, wuj].
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Then

B ∈ [B + (w1 − wuj)r, B + (w1 − wlj)r],

since r ≥ 0. Now we also have

B ∈ DD,

since

Xiβ
b
i = Ti − (1−Xi)β

w
i ∈ [max{0, Ti − (1−Xi)},min{Ti, Xi}]

due to Duncan and Davis (1953). Then we have

B ∈ [B + (w1 − wuj)r, B + (w1 − wlj)r] ∩DD = CI0

in the large sample limit. Therefore CI0 is non-empty.

Q.E.D.

Remark 2. In practice, one can apply the converse of this Proposition to rule out data

sets with empty CI0, which likely suggests either some assumptions are violated or the

size of the data is not large enough for the method to work reliably. The logic is that

the interval should not be empty if the assumptions all hold and the sample size is large

enough.

Appendix C Covariate Contextual Model

In this Appendix we extend the simple linear context model to include a covariate Zi in

addition to the basic regressor Xi. For example, this Z can be a function of the population

Ni of the ith precinct, such as Zi = logNi. This Zi can be easily extended to be a vector

with several covariates.

Assumption 1* (Covariate linear contextual effects.) Assume that (βbi , β
w
i , Xi, Zi),

for i = 1..., p, are iid random vectors satisfying

E(βwi |Xi, Zi) = w0(Zi) + w̃1Xi, (3)

E(βbi |Xi, Zi) = b0(Zi) + b̃1Xi, (4)
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where

w0(Zi) = w̃0 + w̃2Zi, (5)

b0(Zi) = b̃0 + b̃2Zi, (6)

and w̃0, w̃1, w̃2, b̃0, b̃1, b̃2 are six non-random real parameters.

Under this assumption, for the observed response

Ti = βwi (1−Xi) + βbiXi, (7)

we have

E(Ti|Xi, Zi) = w̃0 + (w̃1 + b̃0 − w̃0)Xi + w̃2Zi + (b̃1 − w̃1)X
2
i + (b̃2 − w̃2)XiZi. (8)

So if we do a five-parameter regression based on a model

E(Ti|Xi, Zi) = w̃0 + c̃1Xi + w̃2Zi + d̃1X
2
i + d̃2XiZi, (9)

we will be able to identify five parameters

w̃0, c̃1 = w̃1 + b̃0 − w̃0, w̃2, d̃1 = b̃1 − w̃1, d̃2 = b̃2 − w̃2. (10)

Again there is one unidentified parameter, which we can choose as w̃1.

Under this assumption, using a method similar to that of the main paper, we have the

following results for bounding the unidentified w̃1:

Proposition 1*(Tightest bound with if and only if.) Let [Li, Ui] be the DD bound for

βwi . Assume E(βwi |Xi, Zi) = w0(Zi) + w̃1Xi for all (Xi, Zi) ∈ A ⊂ (0, 1)×<, Then

E(Li|Xi, Zi) ≤ E(βwi |Xi, Zi) ≤ E(Ui|Xi, Zi),

for all (Xi, Zi) ∈ A, if and only if the nonidentifiable w̃1 satisfies

sup
(Xi,Zi)∈A

X−1i [E(Li|Xi, Zi)− w0(Zi)] ≤ w̃1 ≤ inf
(Xi,Zi)∈A

X−1i [E(Ui|Xi, Zi)− w0(Zi)].

(11)

Now, similar to the proof of Proposition 2, we can use the expression of the DD bound in

terms of Ti, Xi and the Jenson’s inequality to express E(Li|Xi, Zi) and E(Ui|Xi, Zi) in
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terms of E(Ti|Xi, Zi), which can be obtained by the five-parameter regression as before.

Proposition 2*(Bound using five-parameter regression and generalA.) AssumeE(βwi |Xi, Zi) =

w0(Zi) + w̃1Xi for all (Xi, Zi) ∈ A ⊂ (0, 1) × <, then we have that the nonidentifiable

w̃1 satisfies

sup
(Xi,Zi)∈A

X−1i [max{0, (E(T |Xi, Zi)−Xi)/(1−Xi)} − w0(Zi)] ≤

w̃1 ≤ inf
(Xi,Zi)∈A

X−1i [min{1, E(T |Xi, Zi)/(1−Xi)} − w0(Zi)]. (12)

When assuming Assumption 1*, we have w0(Zi) = w̃0 + w̃2Zi and the five parameter

regression for E(Ti|Xi, Zi). Then the bound can be expressed in the form of the five

identified parameters ψ = (w̃0, c̃1, d̃1, w̃2, d̃2)
T .

Regarding the choice of A ⊂ (0, 1)× <, as a set of (Xi, Zi) values where we believe

in Assumption 1*, one particularly convenient possibility is to reduce consider a set of

(Xi, Zi) values to a line segment that encompasses the center of data, i.e., (Xi, Zi) =

(Xi, a0 + a1Xi) for some Xi ∈ [l, u], where a0, a1 may be obtained by regressing Zi on

Xi. This way, the formula in Proposition 2* can be made very similar to that of Proposi-

tion 2 since the set is now also for Xi ∈ [l, u].

Proposition 3*(Bound related to Proposition 2 in the main text using a 1-dimensional

A.) Assume Assumption 1* for all (Xi, Zi) ∈ A = {(x, a0 + a1x) : x ∈ [l, u] ⊂ (0, 1)},

then we have that the nonidentifiable w̃1 satisfies

w̃1 = w1 − a1w̃2, (13)

where w1 satisfies the bound in Proposition 2 of the main paper, and the parameter θ =

(w0, c1, d1)
T in that bound satisfies the following linear relation to the five-parameter

ψ = (w̃0, c̃1, d̃1, w̃2, d̃2)
T :

w0 = w̃0 + a0w̃2, c1 = c̃1 + a1w̃2 + a0d̃2, d1 = d̃1 + a1d̃2. (14)
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Remark 1* (How to transform and apply the bound in Proposition 2 of the main

text.) According to the procedure suggested by this proposition, we can first do the five

parameter regression and determine ψ, and then use the relations here to transform it

obtain θ, and then apply the bound of w1 in Proposition 2, and then use w̃1 = w1 − a1w̃2

to obtain the bound for the unidentified w̃1 in the current covariate linear contextual

model.

Proof of Proposition 3*:

This is derived straightforwardly from Proposition 2* and we omit the details. We

only pointing out how the relation of the un-tilded parameters are related to the tilded

parameters due to the particular line segment A that we chose here. In particular for

relation w̃1 = w1 − a1w̃2, we obtain it from from Assumption 1* which states that

E(βwi |Xi, Zi) = w̃0 + w̃1Xi + w̃2Zi. Then in the set A we plug in (*) Zi = a0 + a1Xi

and obtain E(βwi |Xi, Zi = a0 + a1Xi) = w0 +w1Xi where we have w0 = w̃0 + a0w̃2 and

w1 = w̃1 + a1w̃2. The second result implies w̃1 = w1 − a1w̃2. Likewise, plug (*) into

the five parameter-regression equation, we obtain E(Ti|Xi, Zi) = w̃0 + c̃1Xi + w̃2Zi +

d̃1X
2
i + d̃2XiZi = w0 + c1Xi + d1X

2
i , with w0 = w̃0 + a0w̃2, c1 = c̃1 + a1w̃2 + a0d̃2, and

d1 = d̃1 + a1d̃2. Q.E.D.

Remark 2* (Estimation of the district parameter B.) Note that

B =
∑
i

NiXiβ
b
i /
∑
i

NiXi =
∑
i

NiXi(b̃0 + b̃1Xi + b̃2Zi + ebi)/
∑
i

NiXi, (15)

where ebi = βbi − E(βbi |Xi, Zi). These parameters parameters can be related to the five-

parameter regression (9) and (10) by

b̃0 = w̃0 + c̃1 − w̃1, b̃1 = w̃1 + d̃1, b̃2 = w̃2 + d̃2. (16)

Then B can be expressed as

B = B(w̃1, θ) +

∑
iNiXie

b
i∑

iNiXi

, (17)

where the last term is now an average of iid mean zero random variables if Zi includes

information of Ni, since ebi = βbi − E(βbi |Xi, Zi). The first term is then an unbiased for
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B, and is expressed as

B(w̃1, θ) = w̃0+ c̃1+

∑
iNiX

2
i∑

iNiXi

d̃1+

∑
iNiXiZi∑
iNiXi

(w̃2+ d̃2)−
∑

iNiXi(1−Xi)∑
iNiXi

w̃1. (18)

This is linear in the five parameters that can be determined from the regression equation

(9), as well as in the unidentified w̃1. The unidentified w̃1 can be bounded by Proposition

3*.

Remark 3* (Confidence interval for covariate linear contextual model.) Now we

briefly comment on how to obtain the confidence interval when applying the bounds of

Proposition 3*. This proposition provides bounds of w̃1 that are similar to the bounds

of w1 in Proposition 2 in the main text. The upper bound (or respectively the lower-

bound) of w1 is a minimum (or respectively maximum) over four linear combinations of

(1, θT ). Similarly, The upper bound (or respectively the lowerbound) of w̃1 is a minimum

(or respectively maximum) over four linear combinations of (1, ψT ). The conservative

confidence intervals for the district parameter B, related to these bounds, can be derived

similarly. In particular, for the formulas in Proposition 4 of the main text,

• DD, x, r, S1, J remain unchanged,

• θ̂ should be replaced by ψ̂ from the five-parameter regression,

• V should be replaced by the asymptotic variance estimate of ψ̂,

• h0, h, gl0, gl′js, gu0, gu′js should be replaced respectively by h̃0, h̃, g̃l0, g̃l′js, g̃u0, g̃u
′
js

to be defined below,

• h̃0 = h0, g̃l0 = gl0, g̃u0 = gu0,

• hT =
∑

iNiXi(1,1,Xi,Zi,Zi)∑
iNiXi

,

• g̃lTj = glTj D − a11Tw̃2
, g̃uTj = guTj D − a11Tw̃2

, where a1 is the tuning parameter in

the set A in Proposition 3*, 1Tw̃2
= (0, 0, 0, 1, 0), D is the 3 × 5 matrix such that

(14) can be expressed as θ = Dψ.

Remark 4* (Specification of a random set of A where we believe the linear con-

textual assumptions hold.) Our confidence intervals are derived for a set A (where we

9



believe that the linear contextual assumptions hold, whether with or without covariates)

that is pre-determined and non-stochastic. When they are data related, for example when

the parameters l, u or a0, a1 need to be estimated from data somehow to form a random

estimated version of A, deriving confidence interval for B may still be possible by finding

the joint asymptotic distribution of the estimates of all the parameters, including those for

A (such as l, u) and those for the regression model of T (i.e., θ or ψ). This will be more

complicated and may not be necessary. In practice, we expect our proposed confidence

intervals to remain valid even when ignoring the randomness in A, if it is chosen conser-

vatively, i.e., if we believe that the linear contextual assumptions actually hold in a larger

set that contains A with overwhelming probability (with probability tending to 1 as the

number of precincts increases to infinity).
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