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SUPPLEMENTAL APPENDIX

This Supplemental Appendix is divided into five main sections. In the first section, we derive

the closed form of the full conditional distributions of π(Σβ|βi) and π(Σγ|γi) that are required

for Gibbs sampling in Step 1 of the MCMC method (with the slice sampling scheme) used for

estimating the Bayesian Misclassified Failure (MF) Weibull model. This section also presents

the steps for slice sampling for β, γ, and ρ. The second section provides a detailed derivation

of the log-likelihood function of our parametric MF model with time-varying covariates that is

stated in equation (9) of the main paper. This is followed by a discussion of the main prop-

erties of this parametric MF model, and the description of the MF exponential model and its

estimation via MCMC methods. The third section presents and discusses the additional results

(including tables and figures) from the Monte Carlo simulation analyses that were mentioned—

but not presented in detail to save space—in the main paper. The fourth section presents all the

additional tables, figures and convergence diagnostic checks generated from the application of

our Bayesian MF Weibull model to the Buhaug et al (2009) data. The fifth section discusses in

detail the Bayesian MF Weibull model results (including all tables and figures) for the Reenock,

Bernhard and Sobek (2007) democratic survival application.

I Full Conditional Distributions and Slice Sampling

We first derive the closed form of the full conditional distributions of π(Σβ|βi) and π(Σγ|γi)

in Step 1 of the MCMC estimation of our MF Wiebull model:
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(A.2)

We next turn to describe the slice sampling algorithm for estimating β ,γ and ρ. Following

the current practice in Bayesian mixture survival models, we use univariate slice sampler with

stepout and shrinkage (Neal 2003) in Step 2, where the closed form of the full conditional

distribution is intractable. We also follow the modifications made in ‘BayesMixSurv’ R package

(Mahani, Mansour, and Mahani 2016). Below are the steps to perform slice sampling for β

(note that slice sampling for γ and ρ is done in the exact same manner and hence not described

here to avoid repetition):

For βp, p = {1, ..., P},

• Step 0. Choose an arbitrary starting point βp0 and size of the slice w, and set i = 0.

• Step 1. Draw y from Uniform(0, f(βp0)) defining slice S = {βp : y < f(βp)}, where

f(βp) ∝ π(βp|β−p,C,X,Z, t, t0,γ) if exponential

∝ π(βp|β−p,C,X,Z, t, t0,γ, ρ) if Weibull.

(A.3)

• Step 2. Find an interval, I = (L,R), around βp0 that contains all, or much, of the slice,
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where the initial interval is determined as:

u ∼ Uniform(0, w)

L = βp0 − u

R = βp0 + (w − u)

, (A.4)

and expand the interval until its ends are outside the slice or until the limit on steps (limit

on steps = m) is reached (“stepping-out” procedure), by comparing y and (f(L), f(R)):
J = Floor(Uniform(0,m))

K = (m− 1)− J

Repeat while J > 0 and y < f(L) :

L = L− w, J = J − 1

Repeat while K > 0 and y < f(R) :

R = R+ w,K = K − 1

(A.5)

• Step 3. Draw a new point βp1 from the part of the slice within this interval I, and shrink

the interval on each rejection (“shrinkage” procedure):

Repeat: βp1 ∼ Uniform(L,R)

if y < f(βp1), accept βp1 and exit loop

if βp1 < βp0 , then L = βp1

else R = βp1 .

(A.6)

• Step 4. Set i = i+ 1, βp0 = βp1 , and go to Step 1.

• Step 5. After N iterations, summarize the parameter estimates using all sampled values

(via, e.g., credible intervals or posterior means).

II Time-Varying Misclassified Failure Model

Log-Likelihood and Properties

The likelihood function of the general parametric MF model that is developed and defined

from equations (1)-(5) in the paper is given by:

L =
N∏
i=1

[αi + (1− αi)f(ti|Xi,β)]Ci [(1− αi)S(ti|Xiβ)]1−Ci , (A.7)

and the model’s log-likelihood is
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lnL =
N∑
i=1

{C̃i ln[αi + (1− αi)f(ti|Xi,β)] + (1− C̃i) ln[(1− αi)S(ti|Xi,β)]}. (A.8)

Further, recall from the text that the log-likelihood function of the standard general parametric

survival model with time-varying covariates is

lnL =
N∑
i=1

{
C̃ijln

[
f(tij|Xij,β)

S(t0ij|Xij,β)

]
+ (1− C̃ij)ln

[
S(tij|Xij,β)

S(t0ij|Xij,β)

]}
, (A.9)

where C̃ij = 0 denotes all censored observations that are correctly recored, while C̃ij = 1

are non-censored (i.e., “failed”) observations, which may be contaminated with cases that are

actually censored cases (i.e., Cij = 0). Hence, given C̃ij = 0 and C̃ij = 1, we can define the

probability of misclassification as:

αij = Pr(C̃ij = 1|Cij = 0). (A.10)

Incorporating αij, the unconditional density of an event happening is

Pr(C̃ij = 1|Cij = 0) + Pr(C̃ij = 0|Cij = 0) Pr(tij ≤ Tij) = αij + (1− αij)
f(tij)

S(t0ij)
, (A.11)

with a corresponding unconditional survival function of

Pr(C̃ij = 0|Cij = 0) Pr(tij > Tij) = (1− αij)
S(tij)

S(t0ij)
. (A.12)

Combining these two parts and using equation A.9, the log-likelihood function of the parametric

MF model with time-varying covariates is defined as:

lnL =
N∑
i=1

{
C̃ijln

[
αij + (1− αij)

f(tij|Xij,β)

S(t0ij|Xij,β)

]
+ (1− C̃ij)ln

[
(1− αij)

S(tij|Xij,β)

S(t0ij|Xij,β)

]}
,

(A.13)

where αij =
exp(Zijγ)

1 + exp(Zijγ)
.

Building on the preceding discussion, note that if one were to define a probability of non-

misclassification as δij = 1 − αij and substitute this quantity into Equation A.11, the log-

likelihood would be defined as:

lnL =
N∑
i=1

{
Cijln

[
(1− δij) + δij

f(tij|Xij,β)

S(t0ij|Xij,β)

]
+ (1− Cij)ln

[
δij

S(tij|Xij,β)

S(t0ij|Xij,β)

]}
, (A.14)

which is symmetric to the log likelihood of the split-population survival model:
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lnL =
N∑
i=1

{
C̃ijln

[
δij

f(tij|Xij,β)

S(t0ij|Xij,β)

]
+ (1− C̃ij)ln

[
(1− δi) + δij

S(tij|Xij,β)

S(t0ij|Xij,β)

]}
. (A.15)

This implies that some properties of the cure model also hold for the MF model, including (i)

the reduction of the latter to a normal parametric model whenever δ = 1 or α = 0 and (ii)

parameter identification even in the case where identical covariates are included in Z and X.1

Misclassified Failure Exponential Model

To develop the MF exponential model, we require to first define the density function and

survival function in this case which are respectively:

f(tij|Xij,β) = exp(Xijβ)exp(−exp(Xijβ)tij)

S(tij|Xij,β) = exp(−exp(Xijβ)tij).

(A.16)

Following the steps taken to define the log-likelihood function in equation (9) in the main paper,

the log-likelihood function of the MF exponential model with time varying covariates is:

lnL(β, γ)

=
N∑
i=1

{
C̃ijln

[
αij + (1− αij)

exp(Xijβ)exp(−exp(Xijβ)tij)

exp(−exp(Xijβ)t0ij)

]

+ (1− C̃ij)ln
[
(1− αij)

exp(−exp(Xijβ)tij)

exp(−exp(Xijβ)t0ij)

]}
,

(A.17)

where Xij is the ith row of the covariate matrix X at time j and αij =
exp(Zijγ)

1 + exp(Zijγ)
. As shown

in (A.17), the time-varying MF exponential model accounts for the probability of misclassified

failure while estimating the effect of the covariates that influence the survival of the event of

interest (assumed to be exponentially distributed).

While the MF exponential model with time-varying covariates can be estimated by maxi-

mum likelihood using, for example, BFGS,2 we estimate this model via the MCMC algorithm

employed for Bayesian inference. We thus label our model as Bayesian MF exponential model

1See Box-Steffensmeier and Zorn (1999, 5) for a discussion of these properties in the context of the split-
population model.

2The Broyden, Fletcher, Goldfarb, Shannon (BFGS) method in the R optim function. In our Monte Carlo
analysis, we briefly assess the properties of the MF exponential model estimated by BFGS.
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given the use of MCMC estimation. To conduct Bayesian inference, we need to assign a prior

for each of the MF exponential model’s two parameters – β and γ – and then define the con-

ditional posterior distribution of these parameters. Following standard practice, we assign the

multivariate normal prior to β = {β1, ..., βp1} and γ = {γ1, ..., γp2}:

β ∼ MVNp1(µβ,Σβ), γ ∼ MVNp2(µγ,Σγ)

Σβ ∼ IW(Sβ, νβ), Σγ ∼ IW(Sγ, νγ). (A.18)

where we fix µβ = 0 and µγ = 0 and Sβ, νβ, Sγ, νγ are the hyper parameters. Note that

we use hierarchical Bayesian modeling to estimate Σβ and Σγ using the Inverse-Wishart (IW)

distribution. Given these prior specifications and the hyperparameters, the conditional posterior

distributions for β and γ parameters in the Bayesian MF exponential model (with time-varying

covariates) are:

P (β|C,X,Z, t, t0,γ) ∝ P (β|C,X,Z, t, t0,γ)× P (β| µβ,Σβ)

P (γ|C,X,Z, t, t0,β) ∝ P (γ|C,X,Z, t, t0,β)× P (γ|µγ,Σγ). (A.19)

For the sampling scheme, since closed forms for the posterior distributions of β and γ are

not available, we use the same MCMC methods with the slice sampling algorithm described

in the main paper for the Bayesian MF Weibull Model. The only difference is that, unlike the

Weibull model, we ignore the slice sampling for ρ in the Bayesian MF exponential model. The

closed form of the full conditional distributions of P (Σβ|βi) and P (Σγ|γi) as well as the slice

sampling scheme for β and γ is derived and described above (and hence not repeated here).

III Monte Carlo Simulation Results

This section provides a complete presentation of the Monte Carlo (MC) results that are

referenced in the main paper. Recall that we conduct 15 MC experiments in total. Experi-

ments 1 and 2 are primarily presented and discussed within the main paper, and evaluate the

relative performance of a Bayesian Weibull model and a Bayesian MF Weibull model when
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one’s true data generating process (d.g.p.) is (i) standard Weibull (Experiment 1) or (ii) MF

Weibull with a 5% misclassified failure rate (Experiment 2). Experiments 3-4 instead assess

the performance of maximum likelihood (specifically, BFGS) estimated versions of the Weibull

and MF-Weibull models for these same non-MF Weibull (Experiment 3) and MF-Weibull (Ex-

periment 4) outcome variables. Experiments 5-8 consider an exponentially distributed outcome

variable (Experiments 5 and 7), or a MF exponential outcome variable (Experiments 6 and 8),

and evaluate the performance of either (i) Bayesian Weibull, MF-exponential, and MF Weibull

models (Experiments 5-6) or (ii) BFGS exponential, Weibull, MF exponential and MF Weibull

models (Experiments 7-8).

Experiments 9, 10, and 11 revisit the Bayesian Weibull and Bayesian MF Weibull compar-

isons that we conduct in Experiment 2 under conditions where one’s misclassified failure rate

is increased from 5% to 8%, 12%, and 15%, respectively. Experiments 12 and 13 reevaluate

our primary experiments (i.e., Experiments 1 and 2) when the estimated Bayesian Weibull and

Bayesian MF Weibull models are specified using a (very) weakly (in other words, least-) infor-

mative multivariate Cauchy prior, which is distinct from the weakly-informative multivariate

Normal prior that is employed in all other Bayesian MC experiments. Experiments 14 and 15

simulate a log-logistic survival outcome variable (Experiment 14) or MF log-logistic survival

outcome variable, and compare the performance of our Bayesian (MF) Weibull models to that

of a Bayesian Cox Proportional Hazard (PH) survival model for the corresponding non-Weibull

distributed outcome variables.

For all fifteen MC experiments, we compare each relevant model under conditions of N =

1, 000, N = 1, 500, and N = 2, 000. Below, we first present the plotted β̂ and γ̂ values

for Experiments 1-2 (Figures A.1-A.3) which are referenced in the main text. We then pro-

vide a more in-depth interpretation of Experiments 3-15, which includes our reporting of each

experiment’s corresponding (averaged) parameter estimates, (MC)SE’s, RMSEs, and 95% (con-

fidence/credible) coverage probabilities (CPs); and parameter estimate distribution plots.

Experiment 3 compares the performance of (i) a BFGS Weibull model and (ii) a BFGS MF-

Weibull model when the true outcome variable’s d.g.p. is Weibull and the resultant survival

7
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Figure A.1: Distributions of β̂’s Across 500 Simulations for Experiment 1
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Figure A.2: Distributions of β̂’s Across 500 Simulations for Experiment 2
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Figure A.3: Distributions of γ̂’s Across 500 Simulations for Experiment 2

outcome variable contains no instances of misclassified failures. We report this experiment’s

survival stage MC results in the top portion of Table A.1, and in Figure A.4. The results

obtained in Experiment 3 are largely comparable to those obtained in Experiment 1. In cir-

cumstances where a researcher encounters a non-MF Weibull-distributed outcome variable, the

BFGS MF Weibull and BFGS non-MF Weibull estimators each perform comparably with re-

spect to bias and efficiency. For instance, one can note in Figure A.4 that each of the MF and

non-MF β̂ distributions virtually identical for each N evaluated. Likewise, the BFGS Weibull

and BFGS MF Weibull models’ SEs and RMSEs (reported in the top half of Table A.1) are

comparable to the third decimal place for each parameter, and N , of interest.

At the same time, the 95% empirical CP values reported in Experiment 3 consistently favor

the BFGS Weibull model over the BFGS MF Weibull to a larger degree than was the case for our

comparable models in Experiment 1. Notably, we find in Experiment 3 that our BFGS Weibull

CPs are generally 2 to 4 percentage points higher than those of the BFGS MF Weibull CP, for
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each parameter and each N considered. Nevertheless both sets of CPs appear commensurate,

in that they range from 93.2%-96.2% in the case of the BFGS MF Weibull and from 93.4-96.2%

in the case of the BFGS Weibull. Hence, there does not appear to be a substantial risk in

(mis)applying a BFGS MF Weibull model to a non-MF Weibull-distributed outcome variable.

Table A.1: Maximum Likelihood β-Estimates for Experiments 3 and 4

Experiment 3: Non-MF Weibull D.G.P.

#Obs. Model β̂0 SE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 SE(β̂1) RMSE(β̂1) CP(β̂1)

1000
BFGS Weibull 1.000 0.033 0.028 0.934 3.500 0.005 0.004 0.942

BFGS MF Weibull 1.000 0.033 0.028 0.932 3.500 0.005 0.004 0.938

1500
BFGS Weibull 1.001 0.027 0.022 0.962 3.500 0.004 0.003 0.962

BFGS MF Weibull 1.001 0.027 0.022 0.960 3.500 0.004 0.003 0.962

2000
BFGS Weibull 0.998 0.024 0.020 0.946 3.500 0.003 0.003 0.946

BFGS MF Weibull 0.998 0.024 0.020 0.946 3.500 0.003 0.003 0.944

Experiment 4: MF Weibull D.G.P.

#Obs. Model β̂0 SE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 SE(β̂1) RMSE(β̂1) CP(β̂1)

1000
BFGS Weibull 1.210 0.042 0.210 0.000 3.480 0.006 0.020 0.080

BFGS MF Weibull 1.002 0.034 0.027 0.950 3.500 0.005 0.004 0.966

1500
BFGS Weibull 1.217 0.035 0.217 0.000 3.479 0.005 0.021 0.002

BFGS MF Weibull 1.003 0.027 0.022 0.936 3.500 0.004 0.003 0.944

2000
BFGS Weibull 1.196 0.029 0.196 0.000 3.481 0.004 0.019 0.008

BFGS MF Weibull 1.005 0.024 0.019 0.946 3.499 0.003 0.003 0.950

Note: True parameter values are β0 = 1 and β1 = 3.5.

Table A.2: Maximum Likelihood γ-Estimates for Experiment 4

Experiment 4: MF Weibull D.G.P.

#Obs. Model γ̂0 SE(γ̂0) RMSE(γ̂0) CP(γ̂0) γ̂1 SE(γ̂1) RMSE(γ̂1) CP(γ̂1) γ̂2 SE(γ̂2) RMSE(γ̂2) CP(γ̂2)

1000 BFGS MF Weibull -1.648 1.153 0.926 0.960 2.106 0.439 0.377 0.940 3.401 0.624 0.595 0.942
1500 BFGS MF Weibull -1.377 0.937 0.875 0.896 2.048 0.352 0.295 0.946 3.433 0.520 0.520 0.936
2000 BFGS MF Weibull -1.511 0.877 0.781 0.898 2.067 0.333 0.291 0.956 3.399 0.464 0.478 0.928

Note: True parameter values are γ0 = −2, γ1 = 2 , and γ2 = 3.

On the other hand, MC Experiment 4 suggests that there is a non-negligible risk in

(mis)applying a standard BGFS Weibull model to a MF Weibull-distributed outcome variable.

Specifically, we observe in Figure A.5, and in the bottom half of Table A.1, that the BFGS

Weibull model’s β̂’s generally overestimate β0 and underestimate β1, relative to the BFGS MF

Weibull estimator. As a result, the corresponding RMSEs reported for Experiment 4 in Table

A.1 consistently favor the BFGS MF Weibull model over the BFGS Weibull model by a factor

of five to ten. The BFGS Weibull’s CPs likewise largely fail to encompass the true parameter

values (with a range of 0%-8% across all N ’s and parameters), which contrasts notably with
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Figure A.4: Distributions of β̂’s Across 500 Simulations for Experiment 3

those of the BFGS MF Weibull (with a range of 94%-96%) in this Experiment. The BFGS

Weibull model’s averaged SEs in Table A.1 are each also noticeably larger than those of the

BFGS MF Weibull, no matter the β parameter evaluated, or the number of observations con-

sidered. Together this suggests that the BFGS MF Weibull model—as was the case for the

Bayesian MF Weibull model — is preferable to the standard Weibull estimator when misclassi-

fied failure cases exist within one’s Weibull distributed outcome variable. Turning to Table A.2

and Figure A.6, we can also briefly note here that the BFGS MF Weibull model’s γ̂’s generally

exhibit higher bias, and lower efficiency, than either the BFGS MF Weibull β̂ results in Table

A.1, or the Bayesian MF Weibull γ̂ results obtained in Experiment 2. The latter finding lends

support to our main paper’s contention that the Bayesian MF Weibull model is likely preferable

to the BFGS MF Weibull model for applied research.

We next turn to MC Experiments 5–6, which compare the performance of the Bayesian
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Figure A.5: Distributions of β̂’s Across 500 Simulations for Experiment 4

(MF) Weibull models to that of the Bayesian MF exponential models when the true d.g.p. is

either (i) exponential (Experiment 5) or (ii) MF exponential (Experiment 6). We report the

results from these two additional MC experiments in Tables A.3-A.4 and in Figures A.7-A.9.

Beginning first with Experiment 5, we find here that the Bayesian MF estimators again

perform comparably to our non-MF Bayesian estimators when the true d.g.p. contains no

misclassified failure cases. For example, we find in Table A.3 that there are many case where

we obtain slightly lower RMSEs (and hence less bias), and/or slightly superior CPs, within our

Bayesian MF exponential and Bayesian MF Weibull model parameter estimates than in the case

of the Bayesian Weibull model. The corresponding averaged β̂ values reported in Table A.3,

and the plots of each β̂ in Figure A.7, strongly support these conclusions. Nevertheless, and

as was the case in Experiments 1 and 2, we do find that the non-MF Bayesian Weibull model

exhibits consistently lower MCSEs than either the Bayesian MF exponential or the Bayesian

12
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Figure A.6: Distributions of γ̂’s Across 500 Simulations for Experiment 4

MF Weibull within the top half of Table A.3. This suggests that when no misclassified failure

cases exist, non-MF Bayesian survival models are preferable to MF Bayesian survival models

for reasons of efficiency and parsimony.

With regards to MC Experiment 6, Tables A.3-A.4 and Figures A.8-A.9 reaffirm the con-

clusions obtained in Experiment 2. For example, the β̂’s and RMSEs for the Bayesian MF

exponential and Bayesian MF Weibull models in Table A.3 consistently indicate that these

Bayesian MF survival models exhibit little to no bias in recovered survival-stage parameter

estimates when misclassified failure rates exist, whereas the non-MF Bayesian Weibull model

consistently overestimates β̂0 and underestimates β̂1. We find in this case that the corresponding

Bayesian MF survival model RMSEs are generally 4-7 times smaller than those of the Bayesian

Weibull estimator in Experiment 6, whereas each model’s MCSEs are fairly similar across each

N evaluated. Similarly, the 95% empirical CPs for each model evaluated consistently favor

the Bayesian MF models in every instance, with our Bayesian MF Weibull and Exponential
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Table A.3: Markov Chain Monte Carlo (MCMC) β-Estimates for Experiments 5 and 6

Experiment 5: Non-MF Exponential D.G.P.

#Obs. Model β̂0 MCSE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 MCSE(β̂1) RMSE(β̂1) CP(β̂1)

1000
Bayes Weibul 1.002 0.009 0.052 0.946 3.499 0.001 0.007 0.940

Bayes MF Exponential 0.999 0.065 0.053 0.950 3.502 0.009 0.008 1.000
Bayes MF Weibull 0.995 0.067 0.054 1.000 3.502 0.009 0.008 1.000

1500
Bayes Weibull 1.002 0.007 0.041 0.940 3.499 0.001 0.006 0.942

Bayes MF Exponential 1.001 0.053 0.044 0.922 3.500 0.008 0.006 0.926
Bayes MF Weibull 1.001 0.053 0.044 0.926 3.500 0.008 0.006 0.948

2000
Bayes Weibull 1.001 0.006 0.037 0.944 3.500 0.001 0.006 0.926

Bayes MF Exponential 0.999 0.046 0.037 0.950 3.500 0.007 0.005 0.942
Bayes MF Weibull 0.999 0.046 0.038 0.944 3.500 0.007 0.005 0.948

Experiment 6: MF Exponential D.G.P.

#Obs. Model β̂0 MCSE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 MCSE(β̂1) RMSE(β̂1) CP(β̂1)

1000
Bayes Weibul 1.309 0.009 0.309 0.002 3.467 0.001 0.033 0.114

Bayes MF Exponential 1.012 0.009 0.052 0.932 3.499 0.001 0.008 0.930
Bayes MF Weibull 1.012 0.009 0.053 0.930 3.499 0.001 0.008 0.932

1500
Bayes Weibull 1.317 0.007 0.317 0.000 3.465 0.001 0.035 0.014

Bayes MF Exponential 1.004 0.008 0.045 0.940 3.499 0.001 0.007 0.936
Bayes MF Weibull 1.003 0.007 0.046 0.936 3.499 0.001 0.007 0.926

2000
Bayes Weibull 1.290 0.006 0.290 0.000 3.469 0.001 0.031 0.006

Bayes MF Exponential 1.010 0.007 0.040 0.932 3.499 0.001 0.006 0.918
Bayes MF Weibull 1.010 0.007 0.041 0.942 3.499 0.001 0.006 0.930

Note: True parameter values are β0 = 1 and β1 = 3.5.

Table A.4: Markov Chain Monte Carlo (MCMC) γ-Estimates for Experiment 6

Experiment 6: MF Exponential D.G.P.

#Obs. Model γ̂0 MCSE(γ̂0) RMSE(γ̂0) CP(γ̂0)γ̂1 MCSE(γ̂1) RMSE(γ̂1) CP(γ̂1) γ̂2 MCSE(γ̂2) RMSE(γ̂2) CP(γ̂2)

1000
Bayes MF Exponential -1.372 0.312 1.012 0.864 2.033 0.165 0.396 0.846 3.396 0.208 0.611 0.884

Bayes MF Weibull -1.350 0.306 1.038 0.872 2.016 0.165 0.389 0.854 3.373 0.205 0.592 0.888

1500
Bayes MF Exponential -1.169 0.252 1.007 0.778 1.954 0.129 0.329 0.850 3.343 0.163 0.512 0.830

Bayes MF Weibull -1.178 0.259 0.994 0.786 1.963 0.129 0.330 0.836 3.357 0.160 0.525 0.854

2000
Bayes MF Exponential -1.329 0.249 0.879 0.824 1.976 0.128 0.289 0.832 3.300 0.148 0.444 0.862

Bayes MF Weibull -1.322 0.246 0.877 0.788 1.976 0.129 0.297 0.836 3.305 0.149 0.456 0.886

Note: True parameter values are γ0 = −2, γ1 = 2 , and γ2 = 3.

models exhibiting empirical CPs that consistently lie in the 92%-94% range. By comparison,

and across all N ’s and parameters of interest, our Bayesian Weibull models’ CPs fall in the

0%-11% range for this experiment.

Taken together, these findings reaffirm Experiment 2’s conclusion that the Bayesian MF

survival models are preferable to the Bayesian Weibull when one’s d.g.p. contains misclassified

failure cases. In these regards, we can further note in Table A.4 and Figures A.8-A.9 that we

cannot draw similar conclusions with regards to the preferability of the Bayesian MF exponential

over the Bayesian MF Weibull (or vice-versa), as neither model consistently exhibits superior

RMSEs (or MCSEs) over the other in these cases. In light of this, and given that the MF
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Weibull nests the MF exponential, but more flexibly handles circumstances where one’s hazard

rate is non-constant, we can conclude that the Bayesian MF Weibull should typically be favored

over the Bayesian MF exponential in applied research.
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Figure A.7: Distributions of β̂’s Across 500 Simulations for Experiment 5

We next discuss Experiments 7-8, which evaluate the performance of the BFGS (MF)

Weibull and exponential models when the true d.g.p. corresponds to either (i) a simple ex-

ponential survival process with no instances of misclassified failures (Experiment 7) or an ex-

ponential process with 5% misclassified failure cases (Experiment 8). We report our β̂ results

for these two MC experiments within a Table A.5, and also plot the full distributions of these

β parameter estimates within Figures A.10-A.11. In cases where a researcher encounters a

non-MF exponential-distributed outcome variable, we find in the top-half of Table A.5 (and

in Figure A.10) that our BFGS MF survival models perform commensurately with respect to

efficiency, coverage, and accuracy. For both β parameters, and across each N evaluated, the

BFGS MF exponential and BFGS MF Weibull models’ averaged parameter estimates and 95%
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Figure A.8: Distributions of β̂’s Across 500 Simulations for Experiment 6

CPs are virtually identical to those of the standard BFGS exponential and Weibull models.

These similarities between the MF and non-MF survival models evaluated within Experiment

7 are also reflected in the SEs and RMSEs reported in the top half of Table A.5, which are

generally identical (to the third decimal place) for each BFGS model pair considered.

We can also note in Table A.5 that in cases where one’s true d.g.p. is exponential, the

BFGS MF Weibull and BFGS MF exponential models recover very similar averaged β̂ values,

and exhibit near-identical 95% CPs, RMSEs and SEs. These latter findings generally hold true

under Experiment 8 as well, when the true d.g.p. is MF exponential. For instance, each of the β̂

values reported for the BFGS MF Weibull and BFGS MF exponential models in the lower half

of A.5 (and in Figure A.11) are comparable, and the corresponding SEs and RMSEs for these

two BFGS MF models are effectively equivalent. The same can be said for the γ̂’s recovered by

the BFGS MF exponential and BFGS MF Weibull models in Experiment 8, which are reported
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Table A.5: Maximum Likelihood β-Estimates for Experiments 7 and 8

Experiment 7: Non-MF Exponential D.G.P.

#Obs. Model β̂0 SE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 SE(β̂1) RMSE(β̂1) CP(β̂1)

1000

BFGS Exponential 1.002 0.065 0.054 0.950 3.502 0.009 0.007 1.000
BFGS Weibull 1.000 0.066 0.053 1.000 3.501 0.009 0.007 1.000

BFGS MF Exponential 1.001 0.065 0.054 1.000 3.502 0.009 0.007 1.000
BFGS MF Weibull 0.999 0.066 0.053 1.000 3.502 0.009 0.007 1.000

1500

BFGS Exponential 1.002 0.053 0.044 0.938 3.500 0.008 0.006 0.946
BFGS Weibull 1.001 0.054 0.044 0.932 3.500 0.008 0.006 0.946

BFGS MF Exponential 1.002 0.053 0.044 0.926 3.500 0.008 0.006 0.943
BFGS MF Weibull 1.001 0.054 0.044 0.933 3.500 0.008 0.006 0.942

2000

BFGS Exponential 1.000 0.047 0.037 0.958 3.500 0.007 0.005 0.956
BFGS Weibull 1.000 0.047 0.037 0.956 3.500 0.007 0.005 0.956

BFGS MF Exponential 1.000 0.047 0.037 0.955 3.500 0.007 0.005 0.953
BFGS MF Weibull 0.999 0.047 0.037 0.953 3.500 0.007 0.005 0.953

Experiment 8: MF Exponential D.G.P.

#Obs. Model β̂0 SE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 SE(β̂1) RMSE(β̂1) CP(β̂1)

1000

BFGS Exponential 1.245 0.061 0.245 0.028 3.468 0.009 0.032 0.078
BFGS Weibull 1.318 0.071 0.318 0.008 3.466 0.011 0.034 0.104

BFGS MF Exponential 1.013 0.067 0.051 0.942 3.499 0.010 0.008 0.946
BFGS MF Weibull 1.012 0.067 0.052 0.938 3.499 0.010 0.008 0.950

1500

BFGS Exponential 1.243 0.049 0.243 0.004 3.466 0.008 0.034 0.006
BFGS Weibull 1.321 0.059 0.321 0.000 3.465 0.009 0.035 0.012

BFGS MF Exponential 1.005 0.054 0.045 0.948 3.499 0.008 0.007 0.942
BFGS MF Weibull 1.004 0.054 0.045 0.950 3.499 0.008 0.007 0.940

2000

BFGS Exponential 1.228 0.043 0.228 0.000 3.469 0.007 0.031 0.008
BFGS Weibull 1.294 0.050 0.294 0.000 3.468 0.008 0.032 0.012

BFGS MF Exponential 1.010 0.047 0.040 0.946 3.499 0.007 0.006 0.940
BFGS MF Weibull 1.010 0.047 0.040 0.946 3.499 0.007 0.006 0.940

Note: True parameter values are β0 = 1 and β1 = 3.5.

Table A.6: Maximum Likelihood γ-Estimates for Experiment 8

Experiment 8: MF Weibull D.G.P.

#Obs. Model γ̂0 SE(γ̂0) RMSE(γ̂0) CP(γ̂0) γ̂1 SE(γ̂1) RMSE(γ̂1) CP(γ̂1) γ̂2 SE(γ̂2) RMSE(γ̂2) CP(γ̂2)

1000
BFGS MF Exponential -1.756 1.232 0.966 0.968 2.153 0.498 0.395 0.970 3.447 0.723 0.622 0.982

BFGS MF Weibull -1.748 1.226 0.960 0.968 2.136 0.494 0.394 0.964 3.417 0.715 0.627 0.974

1500
BFGS MF Exponential -1.421 0.978 0.878 0.930 2.041 0.382 0.304 0.950 3.391 0.575 0.524 0.966

BFGS MF Weibull -1.426 0.974 0.872 0.930 2.032 0.381 0.308 0.946 3.372 0.571 0.529 0.960

2000
BFGS MF Exponential -1.587 0.912 0.736 0.942 2.056 0.361 0.278 0.950 3.336 0.512 0.449 0.952

BFGS MF Weibull -1.584 0.913 0.737 0.940 2.056 0.361 0.278 0.952 3.338 0.513 0.449 0.958

Note: True parameter values are γ0 = −2, γ1 = 2 , and γ2 = 3.
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Figure A.9: Distributions of γ̂’s Across 500 Simulations for Experiment 6

in Table A.6 and Figure A.12. In this case, the BFGS MF exponential generally exhibits slightly

higher bias than the BFGS MF Weibull when N = 1, 000, but slightly lower or equivalent level

of bias compared to the BFGS MF Weibull when N = 1, 500 or N = 2, 000. Returning to Table

A.5 and Figure A.11, we can also note that our (BFGS) MF survival models substantially

outperform the (BFGS) non-MF survival models when the true d.g.p. includes misclassified

failure cases. However, we further find in this regard that our BFGS MF models’ estimates of

uncertainty and (to a lesser extent) RMSEs in Tables A.5-A.6 are generally inferior to those

obtained for the Bayesian MF models in Tables A.3-A.4. As was the case for Experiments 1-4,

these latter patterns suggest that Bayesian MF models are preferable to BFGS MF models for

applied research.

Experiments 9-11 reevaluate the performance of the Bayesian Weibull and Bayesian MF

Weibull models when applied to a MF Weibull-distributed outcome variable that exhibits a

noticeably higher MF rate (i.e., α) than was the case for Experiments 2, 4, 6, and 8. More
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Figure A.10: Distributions of β̂’s Across 500 Simulations for Experiment 7
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Figure A.11: Distributions of β̂’s Across 500 Simulations for Experiment 8
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Figure A.12: Distributions of γ̂’s Across 500 Simulations for Experiment 8

specifically, Experiments 9, 10, and 11 compare the relative performance of the Bayesian Weibull

and Bayesian MF Weibull models when one’s MF rate increases (from 5%) to 8%, 12%, and

15%, respectively. We report these MC results in Table A.7 (β parameters) and in Table A.8

(γ parameters). We also provide the full distributions of each estimated β and γ parameter

(i.e., across all 500 simulations) within Figures A.13-A.15 and Figures A.16-A.18, respectively.

These tables and figures together demonstrate that the previously identified advantages of the

Bayesian MF Weibull model (i.e., over the Bayesian Weibull model) become even more notable

as one increases a Weibull-distributed outcome variable’s MF rate from 5% to 8-15%. Beginning

with Table A.7, we can note for example that the standard Bayesian Weibull model’s mean β̂0’s

substantially (and increasingly) overestimate β0 as one’s MF rate increases from 8%-to-15%;

whereas the standard Bayesian Weibull model’s β̂1’s increasingly underestimate β1 under these

same conditions.

By contrast, the Bayesian MF Weibull model’s averaged β estimates do not exhibit any
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Table A.7: Markov Chain Monte Carlo (MCMC) β-Estimates for Experiments 9-11

Experiment 9: MF Weibull D.G.P. with α = 8%

#Obs. Model β̂0 MCSE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 MCSE(β̂1) RMSE(β̂1) CP(β̂1)

1000
Bayes Weibull 1.371 0.005 0.371 0.000 3.462 0.001 0.038 0.000

Bayes MF Weibull 1.000 0.003 0.026 0.938 3.500 0.000 0.004 0.898

1500
Bayes Weibull 1.361 0.004 0.361 0.000 3.463 0.001 0.037 0.000

Bayes MF Weibull 1.000 0.003 0.023 0.936 3.500 0.000 0.003 0.922

2000
Bayes Weibull 1.376 0.003 0.376 0.000 3.461 0.000 0.039 0.000

Bayes MF Weibull 1.000 0.002 0.018 0.914 3.500 0.000 0.003 0.928

Experiment 10: MF Weibull D.G.P. with α = 12%

#Obs. Model β̂0 MCSE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 MCSE(β̂1) RMSE(β̂1) CP(β̂1)

1000
Bayes Weibull 1.489 0.004 0.489 0.000 3.446 0.001 0.054 0.000

Bayes MF Weibull 1.001 0.003 0.027 0.828 3.500 0.000 0.004 0.900

1500
Bayes Weibull 1.473 0.003 0.473 0.000 3.447 0.001 0.053 0.000

Bayes MF Weibull 1.005 0.003 0.022 0.672 3.499 0.000 0.003 0.874

2000
Bayes Weibull 1.462 0.003 0.462 0.000 3.449 0.000 0.051 0.000

Bayes MF Weibull 1.005 0.002 0.020 0.592 3.499 0.000 0.003 0.870

Experiment 11: MF Weibull D.G.P. with α = 15%

#Obs. Model β̂0 MCSE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 MCSE(β̂1) RMSE(β̂1) CP(β̂1)

1000
Bayes Weibull 1.559 0.004 0.559 0.000 3.435 0.001 0.065 0.000

Bayes MF Weibull 1.011 0.004 0.030 0.880 3.499 0.001 0.004 0.868

1500
Bayes Weibull 1.552 0.004 0.552 0.000 3.437 0.001 0.063 0.000

Bayes MF Weibull 1.010 0.003 0.023 0.722 3.499 0.000 0.003 0.892

2000
Bayes Weibull 1.557 0.003 0.557 0.000 3.436 0.000 0.064 0.000

Bayes MF Weibull 1.009 0.002 0.020 0.782 3.499 0.000 0.003 0.924

Note: True parameter values are β0 = 1 and β1 = 3.5.

Table A.8: Markov Chain Monte Carlo (MCMC) γ-Estimates for Experiments 9-11

Experiment 9: MF Weibull D.G.P. with α = 8%

#Obs. Model γ̂0 MCSE(γ̂0) RMSE(γ̂0) CP(γ̂0) γ̂1 MCSE(γ̂1) RMSE(γ̂1) CP(γ̂1) γ̂2 MCSE(γ̂2) RMSE(γ̂2) CP(γ̂2)

1000 Bayes MF Weibull 2.003 0.278 0.913 0.948 1.084 0.086 0.272 0.950 4.208 0.159 0.578 0.942
1500 Bayes MF Weibull 1.962 0.192 0.707 0.948 1.077 0.049 0.192 0.938 4.167 0.116 0.442 0.936
2000 Bayes MF Weibull 2.139 0.206 0.672 0.938 1.030 0.057 0.182 0.952 4.169 0.097 0.387 0.938

Experiment 10: MF Weibull D.G.P. with α = 12%

#Obs. Model γ̂0 MCSE(γ̂0) RMSE(γ̂0) CP(γ̂0) γ̂1 MCSE(γ̂1) RMSE(γ̂1) CP(γ̂1) γ̂2 MCSE(γ̂2) RMSE(γ̂2) CP(γ̂2)

1000 Bayes MF Weibull -1.886 0.418 1.571 0.930 1.920 0.176 0.447 0.956 5.706 0.218 0.940 0.952
1500 Bayes MF Weibull -1.363 0.270 1.689 0.872 1.800 0.121 0.375 0.954 5.730 0.175 0.886 0.956
2000 Bayes MF Weibull -1.441 0.261 1.636 0.840 1.842 0.118 0.331 0.930 5.776 0.161 0.867 0.932

Experiment 11: MF Weibull D.G.P. with α = 15%

#Obs. Model γ̂0 MCSE(γ̂0) RMSE(γ̂0) CP(γ̂0) γ̂1 MCSE(γ̂1) RMSE(γ̂1) CP(γ̂1) γ̂2 MCSE(γ̂2) RMSE(γ̂2) CP(γ̂2)

1000 Bayes MF Weibull 7.148 1.334 3.439 0.516 -1.028 0.232 0.675 0.924 9.424 0.720 4.424 0.932
1500 Bayes MF Weibull 7.568 0.802 3.275 0.272 -1.179 0.135 0.478 0.938 8.977 0.502 3.977 0.942
2000 Bayes MF Weibull 6.759 0.518 2.406 0.168 -1.013 0.094 0.343 0.936 8.385 0.278 3.385 0.926

Note: True parameter values are γ0 = 2, γ1 = 1, & γ2 = 4 (Experiment 9); γ0 = −3, γ1 = 2, & γ2 = 5

(Experiment 10); and γ0 = 4.5, γ1 = −1, & γ2 = 5 (Experiment 11).

notable trends in increasing (or decreasing) size as one increases the MF rate beyond 5%,

suggesting that whereas Bayesian Weibull model’s estimates become more biased as the MF rate

increases, the Bayesian MF Weibull model remains comparatively unbiased. This contention is

reinforced by the reported RMSEs in Table A.7, and Figures A.13-A.15. With regards to the
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former quantities, for example, we find in Table A.7 that our Bayesian MF Weibull model’s β̂0’s

exhibit RMSEs that are generally 16 times smaller than those of the Bayesian Weibull model

when α=8%, and RMSEs that are generally 24 times smaller than those of the Bayesian Weibull

model when α=15%. The findings for β̂1 are similar, and demonstrate that one’s Bayesian MF

Weibull exhibits RMSEs that are 12 times smaller than those of the Bayesian Weibull model

when α=8%, and RMSEs that are generally 21 times smaller than those of the Bayesian Weibull

model when α=15%. At the same time, the standard Bayesian Weibull model’s empirical CPs

consistently fail to encompass our true β’s, whereas the Bayesian Weibull exhibits 95% credible

intervals that encompass our relevant β parameters in 93%-95% of all simulations evaluated

under Experiments 9-11.

Turning next to the MF Weibull γ estimates for Experiments 9-11 (Table A.8 and Figures

A.16-A.18), we can note that our averaged γ̂ values for these Bayesian MF Weibull models

generally recover one’s true γ values at comparable rates to those of the Bayesian MF Weibull

models in Experiments 2, 4, 6, and 8. However, we can again note that the Bayesian MF

Weibull model’s γ̂’s in Table A.8 exhibit higher bias, and lower efficiency, than was the case for

these same Bayesian MF Weibulls’ β̂’s in Table A.7.

Experiments 12-13 return to our primary experiments (i.e., Experiment 1 and Experiment

2), and reevaluate the performance of the Bayesian Weibull and Bayesian MF Weibull models for

these two Experiments when each Bayesian model uses a (very-) weakly informative multivariate

Cauchy prior, which is distinct from our preferred weakly-informative multivariate normal prior.

The results from these additional exercises are presented in Tables A.9-A.10 and Figures A.19-

A.21.

Turning first to Experiment 12—which evaluates the performance of our alternate-prior

Bayesian Weibull and Bayesian MF Weibull models when the true d.g.p. is Weibull with no

misclassified failures—we find in Table A.9 and Figure A.19 that the Bayesian MF Weibull

again exhibits comparable performance to our standard Bayesian Weibull estimator. To this

end, we can note that the averaged parameter estimates reported for all models on the top half

of Table A.9 are effectively identical, as our the empirical 95% CPs and our reported parameter
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Figure A.13: Distributions of β̂’s Across 500 Simulations for Experiment 9

1.0 1.2 1.4 1.6

0
5

10
15

Beta 0, N=1000

D
en

si
ty

B.Wei
BMF.Wei

1.0 1.2 1.4 1.6

0
5

10
15

Beta 0, N=1500

D
en

si
ty

B.Wei
BMF.Wei

1.0 1.2 1.4 1.6

0
5

10
15

Beta 0, N=2000

D
en

si
ty

B.Wei

BMF.Wei

3.44 3.46 3.48 3.50 3.52

0
20

40
60

80
10

0
12

0

Beta 1, N=1000

D
en

si
ty

B.Wei
BMF.Wei

3.44 3.46 3.48 3.50 3.52

0
20

40
60

80
10

0
12

0

Beta 1, N=1500

D
en

si
ty

B.Wei BMF.Wei

3.44 3.46 3.48 3.50 3.52

0
20

40
60

80
10

0
12

0

Beta 1, N=2000

D
en

si
ty

B.Wei

BMF.Wei

Figure A.14: Distributions of β̂’s Across 500 Simulations for Experiment 10
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Figure A.15: Distributions of β̂’s Across 500 Simulations for Experiment 11
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Figure A.16: Distributions of γ̂’s Across 500 Simulations for Experiment 9
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Figure A.17: Distributions of γ̂’s Across 500 Simulations for Experiment 10

estimates corresponding RMSEs. At the same time, although both models consistently exhibit

low MCSEs, the Bayesian Weibull model’s MCSEs are generally slightly smaller than those of

the Bayesian MF Weibull. If we then compare these results to those obtained under Experiment

1—which examined a comparable d.g.p.–we find in the case of Experiment 12 that the use of a

multivariate Cauchy prior (relative to the use of a multivariate normal prior) does not appear

to have a consistent effect on either bias or coverage; as our RMSEs and CPs in Table A.9 are

at times identical to those reported in Table 1 of the main paper; and at other times are slightly

smaller or slightly larger than the corresponding Table 1 values. This is the case no matter

whether one examines the Bayesian Weibull or the Bayesian MF Weibull models. Altogether

these results suggest that our parameter estimates and empirical coverage probabilities are not

overly sensitive to the choices of prior specification considered here, at least for the current

experimental conditions evaluated.

With regards to Experiment 13—which evaluates the performance of our alternate-prior
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Figure A.18: Distributions of γ̂’s Across 500 Simulations for Experiment 11

Table A.9: Markov Chain Monte Carlo (MCMC) β-Estimates for Experiments 12-13

Experiment 12: Non-MF Weibull D.G.P.

#Obs. Model β̂0 MCSE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 MCSE(β̂1) RMSE(β̂1) CP(β̂1)

1000
Bayes Weibull 1.001 3.27E-03 0.027 0.946 3.500 4.67E-04 0.004 0.918

Bayes MF Weibull 0.999 3.24E-03 0.028 0.094 3.500 4.63E-04 0.004 1.000

1500
Bayes Weibull 0.999 2.63E-03 0.021 0.954 3.500 3.84E-04 0.003 0.938

Bayes MF Weibull 1.000 2.64E-03 0.022 0.930 3.500 3.85E-04 0.003 0.998

2000
Bayes Weibull 0.998 2.31E-03 0.020 0.926 3.500 3.35E-04 0.003 0.926

Bayes MF Weibull 1.000 2.32E-03 0.019 0.292 3.500 3.36E-04 0.003 0.998

Experiment 13: MF Weibull D.G.P.

#Obs. Model β̂0 MCSE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 MCSE(β̂1) RMSE(β̂1) CP(β̂1)

1000
Bayes Weibull 1.212 3.88E-03 0.212 0.000 3.480 5.81E-04 0.020 0.042

Bayes MF Weibull 1.003 3.30E-03 0.029 0.934 3.500 4.73E-04 0.004 0.940

1500
Bayes Weibull 1.216 3.19E-03 0.216 0.000 3.479 4.86E-04 0.021 0.006

Bayes MF Weibull 1.003 2.67E-03 0.023 0.930 3.499 3.87E-04 0.003 0.944

2000
Bayes Weibull 1.193 2.76E-03 0.193 0.000 3.482 4.16E-04 0.018 0.004

Bayes MF Weibull 1.003 2.35E-03 0.019 0.934 3.500 3.38E-04 0.003 0.946

Note: True parameter values are β0 = 1 and β1 = 3.5.
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Bayesian Weibull and Bayesian MF Weibull models when the true d.g.p. is MF Weibull with 5%

misclassified failures—we find in A.9-A.10 and Figures A.20-A.21 that the Bayesian MF Weibull

model now clearly outperforms the Bayesian Weibull estimator. This finding is consistent with

Experiment 2, and can be most readily observed in the bottom half of Table A.9 via the averaged

RMSEs and 95% CPs reported therein. To this end, we can observe that our Bayesian Weibull

model RMSEs are generally 5-7 times larger than those of the Bayesian MF Weibull model.

Concurrently, the Bayesian Weibull model in the Experiment 13 portion of Table A.9 exhibits

CPs that range from 0%-4%. Given that our Bayesian MF Weibull model’s comparable CPs

lie within the 93%-94% range, this suggest that the Bayesian Weibull model substantially

under-performs relative to the Bayesian MF Weibull in empirical coverage within Experiment

13. Next, comparing our models across the choice of prior specification, we find that our

Experiment 13 results are highly similar (in RMSEs and CPs) to those reported in Experiment

2; suggesting again that the choice of prior specification in this case has little effect on bias

or coverage. Experiment 13’s MF Weibull γ estimates (Table A.10 and Figure A.21) largely

reinforce these conclusions. However, we do find that the use of a multivariate Cauchy prior

tends to lead to slightly higher bias in one’s γ estimates relative to our primary (multivariate

normal) Bayesian MF Weibull survival models.

Table A.10: Markov Chain Monte Carlo (MCMC) γ-Estimates for Experiment 13

Experiment 13: MF Weibull D.G.P.

#Obs. Model γ̂0 MCSE(γ̂0) RMSE(γ̂0) CP(γ̂0) γ̂1 MCSE(γ̂1) RMSE(γ̂1) CP(γ̂1) γ̂2 MCSE(γ̂2) RMSE(γ̂2) CP(γ̂2)

1000 Bayes MF Weibull -1.437 0.287 1.078 0.870 2.109 0.207 0.465 0.888 3.504 0.250 0.674 0.918
1500 Bayes MF Weibull -1.177 0.188 0.965 0.812 1.974 0.105 0.302 0.890 3.388 0.123 0.504 0.902
2000 Bayes MF Weibull -1.349 0.249 0.914 0.844 2.094 0.163 0.359 0.876 3.516 0.197 0.628 0.874

Note: True parameter values are γ0 = −2, γ1 = 2, and γ2 = 3.

How do our proposed Bayesian (MF) Weibull models perform when applied to a (MF)

d.g.p. that is explicitly non-Weibull,3 and how do our Bayesian (MF) Weibull models compare

under such circumstances to an estimator that makes no assumptions about the shape of one’s

baseline hazard function? To begin to answer these questions, Experiments 14-15 generate a

log-logistic (Experiment 14) or MF log-logistic (Experiment 15) survival dependent variable in a

3Note that the exponential d.g.p.’s evaluated above correspond to a Weibull d.g.p. with ρ = 1.
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Figure A.19: Distributions of β̂’s Across 500 Simulations for Experiment 12
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Figure A.20: Distributions of β̂’s Across 500 Simulations for Experiment 13
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Figure A.21: Distributions of γ̂’s Across 500 Simulations for Experiment 13

comparable fashion to that described for Experiments 1-2 in the main paper.4 We then compare

the performance of the Bayesian Weibull estimator, the Bayesian MF Weibull estimator, and

a Bayesian Cox proportional hazards (PH) estimator in each experiment. The results from

Experiments 14-15 appear in Tables A.11-A.12 and Figures A.22-A.24.

With regards to Experiment 14—which evaluates the performance of the aforementioned

models when the true d.g.p. is log-logistic with no misclassified failures—one can observe in

Table A.11 and Figure A.22 that the Bayesian (MF) Weibull models exhibit RMSEs that are

roughly double in size to the comparable RMSE values estimated in Experiment 1. Similarly,

the Bayesian Weibull and Bayesian MF Weibull 95% CPs reported for Experiment 14 in Table

A.11 have declined relative to the comparable values reported in Experiment 1; from a range

of 92%-95% in the case of Experiment 1 to a range of 69%-84% in the case of Experiment

14. By comparison, the Bayesian Cox PH model generally exhibits lower bias (as measured

4E.g., for Experiment 15, we continue to employ a MF rate of approximately 5%.
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via RMSE) than either the Bayesian Weibull model or the Bayesian MF Weibull model for

this experiment—albeit with consistently lower empirical CPs than either of the Weibull-based

models considered here. Altogether, these Experiment 14 results hence suggest that applications

of the Bayesian (MF) Weibull models to non-Weibull distributed survival outcomes that exhibit

no levels of misclassified failures will generally yield higher bias than either (i) a Bayesian Cox

PH model applied to this same non-Weibull distributed outcome or (ii) comparable Bayesian

(MF) Weibull models applied to a similar, but Weibull-distributed, outcome variable.

Table A.11: Markov Chain Monte Carlo (MCMC) β-Estimates for Experiments 14 and 15

Experiment 14: Non-MF Log-logistic D.G.P.

#Obs. Model β̂0 MCSE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 MCSE(β̂1) RMSE(β̂1) CP(β̂1)

1000
Bayes Weibull 1.040 0.007 0.077 0.758 3.500 0.001 0.011 0.802
Bayes Cox PH – – – – 3.506 0.000 2.506 0.754

Bayes MF Weibull 1.081 0.008 0.092 0.638 3.495 0.001 0.010 0.816

1500
Bayes Weibull 1.040 0.006 0.070 0.726 3.500 0.001 0.010 0.746
Bayes Cox PH – – – – 3.506 0.000 2.506 0.740

Bayes MF Weibull 1.077 0.007 0.086 0.148 3.495 0.001 0.009 0.540

2000
Bayes Weibull 1.039 0.005 0.064 0.692 3.500 0.001 0.009 0.754
Bayes Cox PH – – – – 3.509 0.000 2.509 0.704

Bayes MF Weibull 1.083 0.006 0.086 0.480 3.495 0.001 0.008 0.768

Experiment 15: MF Log-logistic D.G.P.

#Obs. Model β̂0 MCSE(β̂0) RMSE(β̂0) CP(β̂0) β̂1 MCSE(β̂1) RMSE(β̂1) CP(β̂1)

1000
Bayes Weibull 1.294 0.007 0.294 0.020 3.472 0.001 0.028 0.224
Bayes Cox PH – – – – 3.478 0.000 2.478 0.218

Bayes MF Weibull 1.092 0.009 0.104 0.864 3.493 0.001 0.012 0.508

1500
Bayes Weibull 1.309 0.006 0.309 0.000 3.470 0.001 0.030 0.084
Bayes Cox PH – – – – 3.483 0.001 2.483 0.120

Bayes MF Weibull 1.087 0.007 0.092 0.556 3.494 0.001 0.009 0.792

2000
Bayes Weibull 1.280 0.005 0.280 0.002 3.473 0.001 0.027 0.068
Bayes Cox PH – – – – 3.488 0.000 2.488 0.142

Bayes MF Weibull 1.088 0.006 0.090 0.494 3.494 0.001 0.009 0.738

Note: True parameter values are β0 = 1 and β1 = 3.5.

Table A.12: Maximum Likelihood γ-Estimates for Experiment 15

Experiment 15: MF Log-Logistic D.G.P.

#Obs. Model γ̂0 SE(γ̂0) RMSE(γ̂0) γ̂1 SE(γ̂1) RMSE(γ̂1) γ̂2 SE(γ̂2) RMSE(γ̂2)

1000 Bayes MF Weibull -1.657 0.293 0.906 0.480 1.581 0.164 0.669 0.618 2.348 0.166 0.983 0.768
1500 Bayes MF Weibull -1.367 0.209 0.813 0.794 1.429 0.117 0.646 0.414 2.190 0.128 0.950 0.416
2000 Bayes MF Weibull -1.543 0.282 0.846 0.746 1.480 0.189 0.709 0.384 2.171 0.212 1.060 0.358

Note: True parameter values are γ0 = −2, γ1 = 2 , and γ2 = 3.

With regards to Experiment 15—which evaluates the performance of the aforementioned

models when the true d.g.p. is MF log-logistic with roughly 5% misclassified failures—we find
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Figure A.22: Distributions of β̂’s Across 500 Simulations for Experiment 14
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Figure A.23: Distributions of β̂’s Across 500 Simulations for Experiment 15
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Figure A.24: Distributions of γ̂’s Across 500 Simulations for Experiment 15

in Tables A.11-A.12 and Figures A.23-A.24 that the Bayesian (MF) Weibull models continue

to exhibit higher RMSEs and worse CPs, relative to the equivalent Bayesian (MF) Weibull

models discussed under Experiment 2 (i.e., the MF Weibull d.g.p. with roughly 5% misclassified

failures). At the same time, the Bayesian MF Weibull model outperforms the Bayesian Weibull

model for both parameters of interest, wherein the former model exhibits RMSEs that are

roughly three times smaller than the latter model; and where the Bayesian MF Weibull model’s

95% credible intervals continue to uniquely recover our true parameter values at commensurate

rates. Most notably, however, are the comparisons between the Bayesian MF Weibull model and

the Bayesian Cox PH model in the lower half of Table A.11. Here, we find that the Bayesian

MF Weibull model’s estimates of β1 consistently exhibit lower levels of bias than those of

the Bayesian Cox PH model, as measured via RMSEs. Likewise, the Bayesian MF Weibull

model’s 95% CPs for β1 in Experiment 15 range from 61%-79%—far higher than those of the

Bayesian Cox PH model for this same parameter (12%-22%). These comparisons suggest that
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in instances where one encounters a non-Weibull distributed outcome variable that exhibits a

low-to-modest level of misclassified failures, the Bayesian MF Weibull model will often remain

a superior choice over non-MF semi-parametric alternatives.

IV Civil War Application: Buhaug et al (2009)

This section is divided into two parts. The first part presents an additional table discussed

in the text that focuses on our analysis of the Buhaug et al (2009) data. This part also

presents the additional figures that are derived from the misclassification and survival stage

of the Bayesian (MF) Weibull models that are estimated on the Buhaug et al (2009) data

(these figures are listed and discussed in the paper). The second part first presents results from

convergence diagnostic checks from the main Bayesian MF Weibull specification estimated on

the Buhaug et al (2009) data. This part then presents and discusses the substantive results

(illustrated as figures) and convergence diagnostics obtained from several additional Bayesian

MF Weibull models applied to the Buhaug et al (2009) data as robustness tests.

Tables and Figures: Buhaug et al (2009) Application

To begin with, recall that we mentioned in the text that there are numerous misclassified

civil conflict “failure” cases in the Buhaug et al (2009) data. Examples of these misclassified

failure cases in which the civil conflict is coded as “terminated” in the Buhaug et al (2009)

data but which persisted beyond their terminated date are listed below in Table A.13. Next,

we mentioned in the paper that the dot-whisker plots of the misclassification stage covariates

from the third and fourth Bayesian MF specification’s misclassification stage are illustrated in

the Supplemental Appendix. We therefore present these plots below (Figures A.25a–A.25b).

Further, we noted in footnote 8 in the text that the dot-whisker plots of the constant (i.e.,

intercept) and the Border × Distance (ln) interaction term from all the Bayesian MF Weibull

survival stage specifications will be presented in the Supplemental Appendix. These plots are

illustrated below.

We next present below additional figures that were discussed in the main paper for the

33



Table A.13: Civil Conflict Examples that Persisted Beyond “Failed” Date in Sample

Country
Civil War Case and Rebel

Group(s)
Country

Civil War Case and Rebel
Group(s)

Chad
Mouvement pour Démocratie et
Développement-Forces Armées

Occidentales (MDD-FAO)
Liberia

National Patriotic Front of
Liberia (NPFL)

Philippines Abu Sayyaf Niger
Union des Fronts de la Résistance

Armée (UFRA)

Philippines
Moro Islamic Liberation Front

(MILF)
Peru Sendero Luminoso

India
Tripura National Volunteers

(TNV)
Ethiopia

Ogaden National Liberation
Front (ONLF)

India
United Liberation Front of

Assam (ULFA)
Egypt El Gama’a El Islamiyya

India Kuki National Front (KNF) Pakistan
Muttahida Qaumi Movement

(MQM)

Myanmar
Kachin Independence
Organization (KIO)

Papua
Bougainville Revolutionary Army

(BRA)
New Guinea

Myanmar
Communist National Party

(BCP)
DR Congo Ninjas

Mozambique RENAMO Mali
Arab Islamic Front of Azawad

(FIAA)

Sri Lanka
Liberation Tigers of Tamil Eelam

(LTTE)
Indonesia

Freitlin: Revolutionary Front for
an Independent East Timor

Figure A.25: Dot-Whisker Plots for Gamma Covariates in Bayesian MF Weibull Models
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Figure A.26: Dot-Whisker Plots for Beta Covariates in MLE and Bayesian (MF) Weibull Models
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Buhaug et al (2009) application but not presented due to space constraints. Figures A.27a–

A.27b below illustrate the hazard ratio plots derived from the estimate of the following key

survival stage covariates in the MLE Weibull model, Bayesian non-MF Weibull model and the

third Bayesian MF Weibull specification: GDP capita at onset (ln) and post Cold War. Recall

that these figures illustrate the marginal effect of each of these two covariates on the hazard

of civil conflict termination across the MLE and Bayesian (MF) Weibull models. We do not

discuss the details of the hazard ratio results illustrated in these figures as they were discussed

in the text.

Figure A.27: Hazard Ratios for GDP/capita at onset and Post-Cold War
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Convergence Diagnostics & Robustness Tests

We present our analysis of convergence diagnostic checks of the Bayesian MF Weibull model

estimated on the Buhaug et al (2009) data. As noted in the text, we specifically conduct the

following three main exercises (described in more detail below) for this analysis in order to assess

convergence of the MCMC parameter estimates in both the misclassification and survival stage

in the Bayesian MF Weibull specifications that are applied to the Buhaug et al (2009) civil war

duration data: autocorrelation plots, the Geweke (1992) diagnostic test, and the Heidelberger

and Welch (1983) test of stationarity. To save space, we focus here on presenting the results

from each of these three exercises conducted for the main Bayesian MF Weibull specification of

interest in which the survival stage covariates repeats the survival stage used by Buhaug et al

(2009; Table 1, Column 5), while the specification’s misclassification stage includes the three

covariates: GDP capita at onset (ln), distance to capital (ln) and conflict at border.

More importantly, for the first exercise, we extract and assess the autocorrelation plots of

all the misclassification and survival stage parameters in the main Bayesian MF Weibull specifi-

cation that incorporates the three aforementioned covariates in the misclassification stage. For

the second exercise, we employ the Geweke (1992) convergence diagnostic test to assess conver-

gence of the misclassification and survival stage parameters in the aforementioned Bayesian MF

Weibull specification. The Geweke convergence diagnostic (Geweke, 1992) test that we employ

in essence compares the location of the sampled parameter on two different time intervals of

the Markov chain in order to assess convergence. If the mean values of the parameter in the

two time intervals are approximately close to each other, then it is safe to assume that the

two different parts of the Markov chain have similar locations in the state space, and hence

that the two samples come from the same distribution. Usually one compares the last half of

the chain, which is assumed to have converged, against some smaller interval in the beginning

of the chain.5 Because many of the estimated survival stage parameters in the Bayesian MF

Weibull specification exhibits “slow mixing”, we compare the first 20% of the Markov chain

and the last 50% of the chain. The Geweke (1992) convergence diagnostic method summarized

5The Geweke diagnostic in fact uses spectral density estimation for the analysis described above.
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here computes a z-statistic where the difference in the two sample means is divided by the

asymptotic standard error of their difference.

For the third exercise, we use the Heidelberger and Welch (1983) test of stationarity which

is a convergence diagnostic that determines whether or not the last part of a Markov chain

of each parameter has stabilized (stated more technically, this test of stationarity determines

whether the trace of simulated values arises from a stationary stochastic process).6 This test

uses the Cramer-von-Mises statistic to assess evidence of non-stationarity for each parameter

in the model. We turn to present the autocorrelation plot (illustrated for lags 1-50) of each

parameter in first the misclassification stage (see Figure A.28 below) in the main Bayesian MF

Weibull specification that includes the three theoretically-identified covariates (GDP capita at

onset (ln), distance to capital (ln), conflict at border). The autocorrelation plots illustrated

in the top row of this figure include—from left to right—the following covariates: constant,

distance to capital (ln), and conflict at border ; the autocorrelation plot in the bottom row

of this figure is GDP capita at onset (ln). We next present the autocorrelation plots (again

illustrated for lags 1-50) of each parameter in the Bayesian MF Weibulls specification’s survival

stage (see Figure A.29 below). The autocorrelation plots illustrated in the top row of figure

A.29 includes—from left to right—the following survival stage covariates: constant, distance to

capital (ln), and conflict at border. The autocorrelation plots illustrated in the middle row of

figure A.29 includes, again from left to right, the following survival stage covariates: distance x

border, fight capacity, and democracy at onset. The autocorrelation plots in the bottom row of

figure A.29 includes GDP capita at onset (ln) and post cold war respectively. Autocorrelation

plots of each parameter in the Bayesian MF Weibull’s misclassification and survival stage in

the figures listed above generally reveals convergence and indicates that there is no high degree

of autocorrelation for the respective posterior samples.

Next, consider the results from the Geweke (1992) convergence diagnostic tests for each

misclassification and survival stage parameter in the same Bayesian MF Weibull specification

6We use the Heidelberger-Welch (1983) test of stationarity since it requires only one realization of the
MCMC to use.
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Figure A.28: Autocorrelation Plots for γ Covariates
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Figure A.29: Autocorrelation Plots for β Covariates
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mentioned above. We first report below z-scores from the Geweke convergence diagnostics for

this specification’s (i) misclassification stage covariates in Table A.14 and (ii) survival stage

covariates in Table A.15. We can clearly see from the Geweke diagnostics in Table A.14 that

none of the misclassification stage parameters in the Bayeisan MF Weibull model produced

significant z-scores, which indicates that there is no evidence against convergence for each of

these parameters. The Geweke diagnostics in Table A.15 also shows that barring distance x

border, none of the other survival stage parameters (including the main parameters of interest

such as GDP capita at onset (ln) and post cold war) produced significant z-scores; this also

indicates that there is no evidence against convergence for these survival stage parameters.

Additionally, as indicated below in the last three columns of Table A.14, the Heidelberger and

Welch (1983) test of stationarity fails to reject the null hypothesis that the Markov chain of

each misclassification stage parameter in the main Bayesian MF Weibull specification of inter-

est is from a stationary distribution. Further, the last three columns of Table A.15 shows that

the Heidelberger and Welch (1983) stationarity test also fails to reject the null hypothesis that

the Markov chain of each survival stage parameter in the Bayesian MF Weibull specification

is from a stationary distribution. Hence, the Heidelberger and Welch (1983) test shows that

all of the misclassification and survival stage parameters have passed the test of stationarity in

Bayesian MF Weibull specification that includes the three theoretically-identified misclassifica-

tion covariates. Altogether, however, the Geweke (1992) and Heidelberger and Welch (1983)

tests indicates that all the parameters in the key Bayesian MF Weibull specification (estimated

on the Buhaug et al (2009) data) has converged.

Table A.14: Convergence Diagnostics for γ Covariates

Geweke Heidelberger & Welch

Z-score stationary test start iteration p-value

distance -0.539 1 181 0.147
border -0.432 1 1 0.831
gdp/capita 0.134 1 1 0.929
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Table A.15: Convergence Diagnostics for β Covariates

Geweke Heidelberger & Welch

Z-score stationary test start iteration p-value

border 0.578 1 1 0.974
distance 1.195 1 1 0.13
border×distance -4.704 1 181 0.218
fight capacity 1.474 1 1 0.143
democracy -0.233 1 1 0.913
gdp/capita -0.092 1 1 0.444
post-cold war -0.701 1 1 0.577

To complete the presentation of all the results from the Buhaug et al (2009) empirical ap-

plication, we next illustrate the results from robustness test specifications for the Bayesian MF

Weibull models estimated on the Buhaug et al (2009) data. For these robustness tests, the

survival stage specification covariates in each additional Bayesian MF Weibull model applied

to the Buhaug et al (2009) data are exactly the same as those reported in the Bayesian MF

Weibull’s survival stage in Figures 3a-3f presented in the paper and Figures A.26a–A.26b in the

Supplemental Appendix. However, we vary the number of covariates in the misclassification

stage of each “robustness test” Bayesian MF Weibull specification presented here. For exam-

ple, we include democracy score at onset and rebel fighting capacity in addition to the three

theoretically-identified misclassification stage covariates in the second Bayesian MF Weibull

specification presented in the main paper (that includes all the survival stage covariates from

the Buhaug et al (2009) model we focus on). The misclassification stage and survival stage

estimates from this Bayesian MF Weibull robustness check specification are illustrated (as dot-

whisker plots) respectively in Figures A.30a and A.32 below. Next, we include only GDP capita

(ln) at onset, democracy score at onset, post-Cold War years to the misclassification stage of

(again) the full Bayesian MF specification whose misclassification and survival stage estimates

are illustrated in Figures A.30b and A.32 respectively. Finally, for the third specification ro-

bustness test, we include GDP capita (ln) at onset, democracy score at onset, post-Cold War

years, rebel fighting capacity, distance to capital (ln), and conflict at border.
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Figure A.30: Dot-Whisker Plots for Robustness Test γ Covariates in Bayesian MF Weibull
Models
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The results for the misclassification stage covariates illustrated above in these additional

specifications are almost exactly the same as those reported for these covariates in the paper.

Moreover, the survival stage results for the covariates in each of the additional Bayesian MF

Weibull specifications estimated for robustness tests (see Figures A.32a–A.32g) are largely the

same as the results for these Bayesian MF Weibull covariates presented in the paper. For

instance, the posterior mean estimate of GDP capita at onset (ln) is consistently negative

and the 95% BCI of this covariate frequently excludes zero in the survival stage of all the

Bayesian MF Weibull models listed above for the robustness tests. The mean estimate of Post-

Cold War years years in the survival stage is almost always negative, although the 95%BCI of

this estimate always includes zero. All other survival stage covariate results in these additional

specifications are, as mentioned earlier, largely similar to the results obtained for these covariates

as discussed in the text. Finally, analysis of the results from the autocorrelation plots, the

Geweke (1992) convergence diagnostic test, and the Heidelberg and Welch (1983) stationarity
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test in the Supplemental Appendix show that in the Bayesian MF Weibull model “robustness

test” specifications presented here, (i) all the misclassification stage parameter estimates has

converged properly and (ii) almost all the parameter estimates in the survival stage has also

converged properly (not reported to save space, but available on request).

We next present results from an additional exercise in which we estimate the Bayes MF

Weibull model on the Buhaug et al (20009) data using the multivariate Cauchy (instead of the

multivariate normal) prior. As shown below in Figures A.31 and A.33, the Bayes MF Weibull

model’s misclassification and survival stage results that use the multivariate Cauchy prior are

similar to those obtained from the Bayes MF Weibull model that uses the multivariate normal

prior.

Figure A.31: Dot-Whisker Plots for Cauchy-Prior γ Covariates in Bayesian MF Weibull Models
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V Democratic Survival Application: RBS (2007)

As noted in the text, our second empirical application focuses on Reenock, Bernhard and

Sobek’s (2007) (hereafter RBS) study of democratic regime survival for the years 1961-1995.

We present in full this empirical application of our Bayesian MF Weibull models to RBS’s

study of democratic regime survival below. To start with, the main aim of the RBS (2007)

study is to explain how the deprivation of basic needs of civilians (specifically, food insecurity)

impacts the survival of democratic regimes at various levels of economic development. RBS

(2007) argue that the level of deprivation—conceptualized and operationalized “as the reciprocal
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Figure A.32: Dot-Whisker Plots for Robustness Test β Covariates in MLE and Bayesian (MF) Weibull Models
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Figure A.33: Dot-Whisker Plots for Cauchy-Prior β Covariates in MLE and Bayesian (MF) Weibull Models
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of the average daily per-capita caloric consumption (the inverse of basic needs satisfaction)”

(RBS 2007, 687)—is a clear indicator of regressive socio-economic distribution. Higher levels

of deprivation threaten democratic regime survival and increase the prospects of a political

breakdown (i.e., regime failure) when the annual level of economic development per capita

within a given country is moderately high. This is because in democracies with at least moderate

income levels—that is, democracies with per capita income of $2,300 and beyond—citizens have

sufficient socio-economic capacity to mobilize against incumbents and credibly threaten regime

survival when deprivation of their basic needs increases (RBS 2007, 687).

RBS evaluate this moderated effect by interacting their main explanatory variable, basic

needs deprivation, with GDP per capita (logged) to see how this interaction impacts their out-

come variable, democratic survival (that is, democratic regime duration) (RBS 2007, 691) using

a standard MLE Weibull model. In addition to this interaction term and its individual com-

ponents, RBS also include the variables economic growth, the dummy variable Presidentialism

for presidential democracies, effective number of parties, religious fractionalization, ethnic frac-

tionalization, past attempts at democracy, and the level of trade openness. RBS (2007) find that

basic needs deprivation × GDP per capita (logged) reliably increases the hazard of democratic

regime failure in their MLE Weibull model, which supports their theoretical prediction. With

respect to substantive effects, they find that increasing basic needs deprivation from 1 SD be-

low to 1 SD above its mean in democracies reliably increases the hazard of democratic regime

“breakdown” (or equivalently decreases democratic regime duration) when per capita income

in their sample of democracies reaches $2,300 (RBS 2007, 692). They also find that economic

growth and trade openness reliably decreases the hazard of democratic regime breakdown while

higher religious fractionalization substantially and reliably increases the hazard of democratic

“failure” (RBS 2007, 692).

Despite the substantive value of RBS’s findings, the criteria used to code failure—that

is, democratic regime breakdown—likely means that observed democratic failures within their

data are contaminated with latent misclassified failure cases. To see why, first note that to be

included in RBS’ analysis of democratic regime (survival), a country must meet Dahl’s (1976)
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threshold of “polyarchy” (that is, a political system that is both competitive and inclusive) and

Linz and Stephan’s (1996) criteria of “stateness”. Countries that cease to meet any of these

standards are thus coded as “failed” (i.e., given a score of one) and exit the dataset. However,

the decision of what constitutes an important enough decline in inclusiveness, stateness, and

competitiveness as to justify a democratic regime being coded as “failed” is inherently sub-

jective. Such criteria are prone to misinterpretation or subjective judgments about the date

of democratic regime breakdown, which thus inadvertently leads to the misclassification of

observed event-failures. Indeed, owing to their subjective criteria for identifying democratic

regime breakdown, we find for example that RBS code breakdown of democracy in Thailand

in 1976 and Sri Lanka in 1983. Yet secondary sources such as the political regimes dataset

in Polity IV and primary sources (listed in Table A.17) show that democracy (as per Dahl’s

polyarchy criteria used by RBS) persisted in Thailand beyond 1971 and also in Sri Lanka well

beyond 1983 (in fact, into the 1990s as well). These two examples are hardly unique. In fact,

numerous additional examples of recorded democratic-failure years listed in Table A.16 have

been misidentified in the RBS (2007) data, suggesting that their observed democratic-failures

are indeed contaminated with misclassified failure cases.

Given that contaminated misclassified failure cases in survival data generates econometric

challenges, we estimate our Bayesian MF Weibull model (using the slice sampling MCMC

algorithm) on RBS’ survival data to statistically account for the possibility that the observed

democratic regime failure in these data include misclassified failure cases. We replicate the main

specification in column 2 of Table 1 in the RBS paper (see RBS 2007, 692 that tests the effect

of basic needs deprivation × GDP per capita (logged) and other controls on their democratic

survival outcome variable), by first estimating (i) the standard MLE Weibull model and then

(ii) three different specifications of our Bayesian MF Weibull model on the RBS (2007) data

using our slice sampling (MCMC) algorithm and the Mutivariate Normal prior (our results

remain robust when we use the multivariate Cauchy Prior). To this end, we specified the

Bayesian MF Weibull model’s hyperparameters as follows: a = 1, b = 1, Sβ = Ip1, Sγ = Ip2,

νβ = p1 and νγ = p2. The results from the Bayesian MF Weibull models are based on a set of
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Table A.16: Democratic Regimes Examples in RBS (2007) that Survived Beyond “Failed” Date

Country Event Description

Ghana
Recorded as Failed in 1972 in RBS (2007) but democracy survived (as
per “competitiveness” criteria) in Ghana beyond this date according to
secondary sources1 and primary sources.2

Madagascar
Recorded as Failed in 1971 in RBS (2007). Yet democracy survived
(as per “competitiveness” criteria) in Madagascar beyond this date
according to secondary sources1 and primary sources.2

Nigeria

Recorded as Failed in 1966 in RBS (2007). However, democracy sur-
vived (as per “competitiveness” criteria) in Nigeria well beyond this
date (till the early 1970s) as per secondary sources1 and primary
sources.2

Malaysia

Recorded as Failed in 1969 in RBS (2007). But secondary sources1

and primary sources2 indicate that Malaysia made a transition to au-
thoritarian rule only from the mid-1970s onwards which implies that it
survived as a democracy well beyond this recorded date in RBS.

Peru
Recorded as Failed in 1992 in RBS (2007). Yet primary sources2 have
shown unambiguously that in terms of “inclusiveness” and “competi-
tiveness,” Peru continued as a democracy till the mid-1990s.

Uruguay
Recorded as Failed in 1973 in RBS (2007) but democracy survived (as
per “inclusiveness” and “competitiveness” criteria) in Uruguay beyond
this date according to secondary sources1 and primary sources.2

Philippines
Recorded as Failed in 1972 in RBS (2007) but democracy survived
(as per “inclusiveness” and “competitiveness” criteria) in Philippines
beyond this date according to secondary sources1 and primary sources.2

Suriname
Recorded as Failed in 1989 in RBS (2007). Yet democracy survived (as
per “inclusiveness” and “competitiveness” criteria) in Madagascar be-
yond this date as according to secondary sources1 and primary sources.2

Notes: 1These secondary sources include the Varieties of Democracy (V-Dem) Database by Coppedge et

al (2016), Cheibub et al (2010) political regimes dataset, and the Polity IV database. 2For a list of these

primary sources see Table A.17.

100,000 iterations with 10,000 burn-in scans and a thinning of 100.

To start, the standard MLE Weibull specification that we estimate for the RBS (2007) ap-

plication includes all the same variables reported in column 2 of Table 1 in RBS (2007) which

influence the democratic survival outcome variable (e.g., basic needs deprivation × GDP per

capita (logged), the individual components of this interaction term, economic growth, Presiden-

tialism, and so on). Next, we estimate the first (i.e. baseline) Bayesian MF Weibull specification

in which the survival (X) stage of this specification also includes all the same variables reported
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in column 2 (Table 1) in RBS (2007, 691). The misclassification stage of this baseline specifi-

cation only includes an intercept.

The survival stage of the second Bayesian MF Weibull specification also includes all of the

covariates reported in RBS (2007, 691). But the misclassification (Z) stage of this specification

includes the following covariates that may affect the likelihood that some cases of democratic

breakdown have been misclassified as terminated even when they had (possibly) not failed.

We first include the dummy variable for Presidential democracies (labeled Presidentialism)

in the misclassification stage. To understand why, note that extensive debates exist about

whether Presidential regimes are “inclusive” and “competitive” and the extent to which these

regimes are inclusive and competitive 7 – two key criteria in Dahl’s polyarchy concept that

RBS use to code when democratic regimes breakdown in their sample. Because the extent of

inclusiveness and competitiveness in Presidential regimes are ambiguous, it may be difficult

for researchers to accurately identify if and when breakdown of Presidential democracies occur

using the criteria that RBS (2007) employ. This increases the possibility of misidentification

of breakdown of Presidential democracies. Hence, we anticipate that Presidentialism will be

positively associated with the probability of misclassified failure.

Next, we add GDP per capita (logged) and economic growth to the misclassification stage

in the second Bayesian MF Weibull specification. The rationale for doing so is as follows.

Specifically, studies have shown that the frequency of democratic breakdown is rare in democ-

racies with a relatively high per capita income level of $6,055 (1985 PPP USD) and beyond,8

during periods of economic growth in democracies and in states characterized by high levels

of trade openness (Przeworski and Limongi 1997; Boix 2003). Misclassifying or misidentifying

democratic breakdowns under the aforementioned conditions is therefore less likely given the

relative low frequency of democratic regime failure in the context of these conditions. Thus,

we anticipate that logged GDP per capita, economic growth, and trade openness will each be

negatively associated with the probability of misclassified failure. Moreover, unlike presidential

7For this see e.g., Linz (1994); Samuel and Shugart (2010).
8Przeworski and Limongi 1997, 165.
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democracies, scholars have suggested that the extent of formally institutionalized inclusiveness

in democracies with higher levels of ethnic or religious fractionalization is well defined and

clear (Munck 2009; Teorell 2010). It is thus easier to accurately record if and when democratic

regime breakdown occurs in more fractionalized societies as per the criteria used by RBS (2007).

Hence the influence of ethnic and religious fractionalization on the probability of misclassified

failure is likely to be negative. Finally, the third Bayesian MF Weibull specification for this

empirical application includes all the covariates from the RBS (2007) specification within both

the survival and misclassification stage of the Bayesian MF Weibull specification.

We turn to first discuss the misclassification stage and then the survival stage results from

the Bayesian MF Weibull models that are estimated on the RBS (2007) democratic survival

data. The misclassification stage results are presented via the following illustrations derived

from the Bayesian MF models results: dot-whisker plots (Figure A.34) that illustrates each mis-

classification stage covariate’s posterior mean estimate with its 95% Bayesian Credible Intervals

(hereafter BCI) and the first difference in misclassification probabilities from the Bayesian MF

model’s misclassification stage (Z) covariates (Figure A.35)

Figure A.34: Dot-Whisker Plots for γ Covariates in Bayesian MF Weibull Models

(a) Reenock et al (2007) Specification 2
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(b) Reenock et al (2007) Specification 3
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The dot-whisker plots from the posterior mean estimates for ethnic and religious fraction-

alization and the 95% BCI of these mean estimates in the misclassification stage illustrated in

Figure A.34 statistically supports our claim that each of these two covariates will be negatively
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Figure A.35: Change in Probability of Misclassification for Reenock et al. (2007)

●

●

●

●

●

●

Econ Growth

Ethnic Fractionalization

GDP per cap

Openness

Presidentialism

Religious Fractionalization

−0.01 0.00 0.01 0.02
Change in Pr(Misclassification)

Note: Black dot represents predicted change in the duration of democracy as the row variable changes from 1 SD
below the mean to 1 SD above the mean for continuous variables and 0-1 change for dichotomous variables while
holding all other variables at their mean or mode. Whiskers indicate the 95% credible interval. Results come from
Reenock et al (2007) specification 3.

associated with the probability of misclassified failure. More specifically, the first difference

in misclassification probabilities derived from the second Bayesian MF Weibull specification

applied to the RBS (2007) data, which is also illustrated above in Figure A.35, shows that in-

creasing ethnic and religious fractionalization from 1 SD below to 1 SD above their respective

mean9 decreases the probability of misclassified failure by approximately (i) 0.31% for religious

fractionalization and (ii) 0.2% in the case of ethnic fractionalization. The 95% BCI of the

substantive effect of religious fractionalization excludes zero, while the 95% BCI of ethnic frac-

tionalization includes zero. The former result confirms our intuition that it is less likely that

regime failure in democracies with high levels of religious fractionalization will be misclassified,

and moreover, this result is reliable.

Contrary to our expectations, we find from the misclassification stage of the Bayesian MF

Weibull specifications that GDP per capita (logged), economic growth and trade openness are

each positively associated with the probability of misclassified failure. The first difference in

misclassification probabilities with 95% BCI illustrated in Figure A.35 shows that the statisti-

9While holding other covariates at their respective mean or mode in the sample.
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cally positive association between two of the three aforementioned covariates (GDP per capita

(logged) and trade openness) and the probability of misclassified failure is indeed reliable and

substantial. The posterior mean estimate for Presidentialism in the misclassification stages of

the main Bayesian MF Weibull specification (of interest) is -0.462 and -0.446. But the 95%

BCI of the mean estimate and substantive effect of Presidentialism (see figure A.35) in the

misclassification stage always includes zero, which indicates that the association between this

dummy variable and the probability of misclassified failure is unreliable.

We next briefly report the results from the survival stage of the Bayesian MF Weibull

specification(s) that are estimated on the RBS (2007) data. To this end, we find that the

coefficient estimates from the standard MLE Weibull model applied to the RBS (2007) exactly

mirror the results that is reported by RBS (2007) on page 689 of their published paper (we

thus do not report the MLE Weibull’s coefficient estimates to save space). In particular, the

negative effect of basic needs deprivation × GDP per capita (logged) in the standard MLE

Weibull specification is reliable. It thus supports the finding by RBS (2007) that this interaction

term reliably increases the hazard of democratic regime failure or equivalently decreases the

duration of democratic regimes. Next, consider the three rows in each of the dot-whisker plot

in Figure A.36 that illustrate the posterior mean estimates (and their respective 95% BCI) of

the survival stage covariates from the three main Bayesian MF Weibull specifications estimated

on the RBS (2007) data. In sharp contrast to the results reported by RBS (2007) in their MLE

Weibull model, the dot-whisker plots in Figure A.36c suggests that the basic needs deprivation

× GDP per capita (logged) interaction term decreases the hazard of democratic regime failure

or, in other words, increases the duration of democracies even though the 95% BCI of this

mean estimate consistently includes zero. This result is exactly the opposite of what RBS

(2007) find in their standard MLE Weibull model. It also indicates that once we statistically

account for misclassified democratic regime failure cases, we find that there is a negative–rather

than positive (as RBS 2007 find)– association between basic needs deprivation and the hazard

of democratic regime failure once per capita income increases beyond its mean in the sample.

Although the key interaction term’s result in the Bayesian MF Weibull model’s survival
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Figure A.36: Dot-Whisker Plots for β Covariates in Bayesian MF Weibull Models
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stage is substantially different from those reported by RBS (2007), the rationale underlying this

“contrarian” result is intuitive and is as follows. Specifically, democracies with moderately high

levels of per capita income and beyond are on average more accountable to their citizens and also

have greater material capacity for addressing crises such as food (a key “basic need”) shortages

that result from exogenous shocks (e.g., Sen 1982; Lindert 2004). Hence when basic needs

deprivation occur in relatively higher income democracies, governments in these democracies

are more likely to successfully resolve such deprivation crises. This will serve to reinforce the

citizens’ faith in the democratic political process in these countries which in turn helps to

increase the prospects for survival and duration of democracies, as shown empirically by our

Bayesian MF Weibull models.

Other key results from the survival stage of all the Bayesian MF Weibull specifications

applied to the RBS (2007) data also vary dramatically from those reported by RBS (2007).

For instance, RBS (2007) suggest and find that economic growth reliably decreases the hazard

of democratic regime failure. The posterior mean estimate and the 95% BCI for economic

growth across the Bayesian MF Weibull’s survival stage specifications, however, reveal that

the association between this variable and the hazard of democratic regime failure is weak,

inconsistent and fragile (see Figure A.36d). RBS (2007) report that religious fractionalization

reliably increases the hazard of democratic regime failure. In contrast, the posterior mean

estimate and the 95% BCI for religious fractionalization in the Bayesian MF Weibull model’s

survival stage specifications is also weak and inconsistent, therein suggesting that the association

between religious fractionalization and the hazard of democratic regime failure is unreliable.

Lastly, standard convergence diagnostic checks for the parameters in each Bayesian MF Weibull

specification estimated for the RBS (2007) data also suggests that the Markov chain has reached

a steady state in each case. Indeed, autocorrelation plots (available on request) from the

Bayesian MF Weibull’s misclassification and survival stage specifications reveals not only good

mixing and rapid convergence but also indicates that there is no high degree of autocorrelation

for the posterior samples. Further, none of the misclassification and survival stage parameters

produced significant z-scores from the Geweke diagnostic test applied to the Bayeisan MF

53



Weibull models estimated on the RBS (2007) data. This indicates that there is no evidence

against convergence based on the Geweke diagnostic and that the Markov chain has successfully

converged to the desired posterior.
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Table A.17: Sources for Identifying Misclassified Democratic Failure Cases in RBS (2007) Data

Countries in sample
by region

Region and country-specific sources

South and
South-East Asia

Bangladesh;
Cambodia; India;

Indonesia; Malaysia;
Myanmar; Nepal;

Pakistan; Philippines;
Sri Lanka; Suriname;

Thailand

Human Rights Watch. Descent into Chaos: Thailand’s 2010 Protests
and the Government Crackdown. New York and Bangkok: Hu-
man Rights Watch, 2011.

Brass Paul (ed). Routledge handbook of South Asian politics: India,
Pakistan, Bangladesh, Sri Lanka, and Nepal. Routledge, New
York.

Hussain . 2008. Politics of alliances in Pakistan, unpublished PhD
thesis submitted to the National Institute of Pakistan Studies,
Quaid-i-Azam University, Islamabad, Pakistan.

Kochanek SA. 2000. “Governance, patronage politics, and demo-
cratic transition in Bangladesh.” Asian Survey 40(3): 530550

Kershaw, Roger. 2001. Monarchy in South-East Asia: The Faces of
Tradition in Transition. London and NewYork: Routledge.

Case, William F. 2002. Politics in Southeast Asia: Democracy or
Less. London and New York: Routledge Curzon.

Connors, Michael K. 2011, “Ambivalent about Human Rights: Thai
Democracy,” in Thomas W. D. Davis and Brian Galligan (eds),
Human Rights in Asia, Cheltenham, UK and Northampton, MA:
Edward Elgar, pp. 10322

Freedman, Amy L. 2007, “Consolidation or Withering Away of
Democracy? Political Changes in Thailand and Indonesia.”
Asian Affairs: An American Review vol. 33, no. 4 (Winter),
pp. 195-216.

Frolic, Michael B. 2001, “Transitions to Democracy after the Cold
War,” in Amitav Acharya, B. Michael Frolic, and Richard Stubbs
(eds), Democracy, Human Rights and Civil Society in South East
Asia, Toronto, Canada: University of TorontoYork University
Joint Centre for Asia Pacific Studies, pp. 21–35.

Latin America

Colombia; Ecuador;
El Salvador;

Dominican Republic;
Guatemala; Grenada;

Honduras; Mexico;
Nicaragua; Paraguay;

Peru; Suriname;
Uruguay; Venezuela

Mettenheim, Kurt., and James Malloy. 1998. Deepening Democracy
in Latin America. Pittsburgh: University of Pittsburgh Press.

Millet, Richard. 2009. “Democratic Consolidation in Latin Amer-
ica?” In Latin American Democracy : Emerging reality or en-
dangered species? eds, Richard L. Millet, Jennifer S. Holmes,
Orlando J. Prez. New York: Routledge

Pinkney, Robert. 2003. Democracy in the Third World. London:
Lynne Rienner Publishers.

Hagopian, Frances. and Scott Mainwaring., 2005. The Third Wave
of Democratization: Advances and Setbacks. New York: Cam-
bridge University Press

Hagopian, Mainwaring, and Daniel Brinks. 2008. “Political
Regimes in Latin America, 1900-2007” http://kellogg.nd.

edu/scottmainwaring/Political_Regimes.pdf

Rector, John. 2003. The History of Chile. New York: Palgrave
Macmillan

Schedler, Andreas. 2001. “Measuring Democratic Consolidation.”
Studies in Comparative International Development 36 (1): 66-
92.

Blake, Charles. 2005. Politics in Latin America. Boston: Houghton
Mifflin Company.

Buxton Julia., and Nicola Philips. 1999. Case Studies in Latin
America Political Economy. Manchester: Manchester Univer-
sity Press.
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Countries in sample
by region

Region and country-specific sources

Africa

Benin; Botswana;
Chad; Congo;

Gambia; Ghana;
Madagascar; Mali;

Mozambique;
Namibia; Niger;

Nigeria; Sierra Leone;
South Africa; Sudan;
Tanzania; Uganda;

Zambia

Bogaards, M. 2004. “Counting parties and identifying dominant
party system in Africa.” European Journal of Political Research.
43: 173-197.

Bratton, M., Walle, N. van de. 1997. Democratic experiments in
Africa. Cambridge: Cambridge University Press.

Osei, A. 2012. Party-Voter Linkage in Africa, Party Research in
Africa: Findings and Problems.

Ellis, S. 1994. “Democracy and Human Rights in Africa” in Rob
Van Berg UlbeBosma (eds) Poverty and Development: Historical
Dimension of Development, Change and Conflict in the South,
Ministry of Foreign Affairs. The Hague. Pp. 115-124.

Bratton, M., Houessou, R. 2014. Demand for democracy is rising in
Africa, but most political leaders fail to deliver. Afrobarometer
Policy Paper No. 11.

Bratton, M., Mattes, R., Gyimah-Boadi, E. 2005. Public opinion,
democracy, and market reform in Africa. New York: Cambridge
University Press.

Gyimah-Boadi, E. 2015. “Africa’s waning democratic commitment.”
Journal of Democracy, 26(1), 101–113.

LeBas, A. 2014. “The perils of power sharing.” Journal of Democ-
racy. 25(2), 52–66

Wing, S. 2008. Constructing democracy in transitioning societies in
Africa: Constitutionalism and deliberation in Mali. New York:
Palgrave Macmillan.

Central and
Eastern Europe;
Former USSR

Austria;
Czechoslovakia;

Estonia; Germany;
Hungary Latvia;

Lithuania; Poland;
Romania; Russia
(USSR); Slovakia;

Ukraine

Linz, Stepan, and Richard Gunther. 1995.“Democratic Transitions
and Consolidation in Southern Europe, with Reflections on Latin
America and Eastern Europe.” In The Politics of Democratic
Consolidation: Southern Europe in Comparative Perspective, eds
Richard Gunther, Nikiforos Diamandouros, Hans-Jurgen Puhel.
Baltimore: John Hopkins University Press

Plasser, Fritz and Ulram, Peter A. 1994. “Monitoring Democratic
Consolidation: Political Trust and System Support in East-
Central Europe”, Paper for the XVI th World Congress of the
International Political Science Association, Berlin.

Banac, Ivo. 2014. “Twenty-Five Years after the Fall of the Berlin
Wall. East European Politics and Societies and Cultures,” Spe-
cial Issue on the Post-1989 Developments in the Region, 28 (2):
653-657.

Bogaards, Matthijs. 2009. “How to classify hybrid regimes? De-
fective democracy and electoral authoritarianism.” Democrati-
zation, 16 (2): 399-423.

Coman, Ramona and Tomini, Luca 2014. “A Comparative Perspec-
tive on the State of Democracy in Central and Eastern Europe.”
Europe-Asia Studies 66 (6): 853-858

Dzihic, Vedran. 2014. “Grey zones between democracy and author-
itarianism: Re-thinking the current state of democracy in East-
ern and South Eastern Europe” in Wiersma et al., eds. 2014.
Problems of Representative Democracy in Europe, Amsterdam:
Foundation for European Progressive Studies: 21-30.

Papadopoulos, Yannis. 2013. Democracy in Crisis? Politics, Gov-
ernance and Policy. Houndmills: Palgrave-Macmillan, 296.
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Countries in sample
by region

Region and country-specific sources

Central and
Eastern Europe;
Former USSR
(Cont.)

Austria;
Czechoslovakia;

Estonia; Germany;
Hungary Latvia;

Lithuania; Poland;
Romania; Russia
(USSR); Slovakia;

Ukraine

Pappas, Takis. 2014. Populist Democracies: Post-Authoritarian
Greece and Post-Communist Hungary. Government and Opposi-
tion 49 (1): 1-25.

Golosov, G. 2008. “Electoral authoritarianism in Russia.” Pro et
Contra, JanuaryFebruary.

Rose R, W. Mishler, N. Munro. 2006. Russia transformed: devel-
oping popular support for a new regime. Cambridge University
Press, Cambridge, UK (2006)

Rose R, N. Munro, W. Mishler. 2004. “Resigned acceptance of
an incomplete democracy: Russia’s political equilibrium.” Post-
Soviet Affairs, 20(3):195–218
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