
APPENDIXES

A.1 Sampling Algorithm

Here we describe the Markov chain Monte Carlo (MCMC) algorithm used to compute marginal

posterior distributions of the model parameters. For convenience, we reiterate some definitions.

Let ni is the number of parties in a unit of analysis i = 1, ..., N . Let Z be a N ×D matrix of

latent variables obtained by stacking vectors zi. Similarly, let Y be a N × D matrix of observed

data, where yij = zij if j < ni and yij = NA otherwise. Here, D = max(ni)− 1, is the number of

multivariate t regressions estimated in the model. Lastly, let X be a N ×K design matrix. The

sampling algorithm alternates between four blocks and uses Gibbs sampler with a Metropolis step:

Z|Y, n,γ,Σ, τ (A.1)

γ,Σ|Z,m, t, τ (A.2)

m, t, s|γ,Σ (A.3)

τ, ν|Z,γ,Σ (A.4)

Conditional on Z, parameters γ and Σ are independent of the incompletely observed Y ; this enables

us to the Gibbs sampler (?). To sample t-distributed random variables, we employ a well-known

result that a multivariate t variable can be expressed as a scale-mixture of multivariate normal

variables. In particular, if Z∗ is a standard multivariate normal and if τ ∼ G(ν/2, ν/2) then,

Z = Z∗/τ1/2 is a multivariate t variable with ν degrees of freedom. If one prefers to use the

Gaussian latent model, then one should set τi = 1 for all i and simply skip the step A.4.

To implement the step A.1, first define
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Σ =

 ΣLL ΣLD

ΣDL ΣDD

 (A.5)

where ΣLL = Σ[1:L,1:L] and ΣDD = Σ[L+1:D,L+1:D]. Let µi = (µ1, ..., µD) = (x′iγ1, ...,x′iγD) and

let µl:p = (µil, ..., µip) for any l < p. From the definition of the model in (??) - (??) and the

multivariate normal theory, we have for each i = 1, ..., N

(zi1, ..., zij , ..., ziD)
∣∣∣yi, ni,γ,Σ ∼

 1(Zi=yi)
if j < ni

N
(
µi,Σ/τi) if j ≥ ni,

(A.6)

where µi = µni:D + ΣDLΣ−1
DD(y1:ni

− µ1:ni
) and Σ = ΣDD − ΣDLΣ−1

LLΣLD. Thus, each Zij is

replaced with Yij whenever the latter is observed, while the remaining Zij ’s are sampled from the

corresponding scaled conditional multivariate normal distributions.

Second, the parameters γ are sampled from the multivariate Gaussian distribution:

γ|Σ,m, t, τ ∼ N
(
C−1

0

(
X′(Σ−1 ⊗ diag(τ )

)
Z + Γ−1

0 γ0

)
,C−1

0

)
(A.7)

where C0 = X′
(

Σ−1 ⊗ diag(τ )
)
X + Γ−1

0 and ⊗ denotes the Kronecker product. Here, γ0 =

(m11′L, ...,mK1′L), a priori means of each γjk stacked into one vector. The joint prior variance of

γ is defined in a similar manner: Γ0 = diag(t11′L, ..., tK1′L). Each mk is sampled from the normal

distribution with mean 1
D

∑D
j=1 γjk and standard deviation t−1

k /D. Shrinkage parameters tk are

sampled from the gamma distribution with shape D/2 + a and rate 1
2

∑D
j=1(γjk −mk)2 + b.

Third, Σ is sampled from the inverse Wishart distribution:
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Σ|γ, s, τ ∼ IW
(
N + w1, w2I +

N∑
i=1

τiu′iui

)
(A.8)

where ui = zi − x′iγ. We let w1 = h+D+ 1 and w2 = hs and then sample parameters (h, s). The

conditional density π(h, s|Σ) does not have a closed form; thus, we employ the Metropolis algorithm

with random walk proposals (see ?).

The step A.4 is implemented by first sampling

τ |ν, Z,Σ,γ ∼ G
(
ν/2 +D/2, (Z −Xγ)′Σ−1(Z −Xγ)/2 + ν/2

)
(A.9)

and then sampling ν|τ using the Metropolis algorithm with independence sampling. Alternatively,

if one prefers to use the t model with known degrees of freedom (e.g., for sensitivity analysis), then

the step A.4 is reduced to sampling τ |· while ν is fixed at a chosen value.

Finally, the Metropolis algorithm is also used to sample the count model parameters β and w.

The convergence of the algorithm is monitored using ? diagnostic as well as Heidelberg and Welch

diagnostic (?).

A.2 Average Predicted Party System

A predicted party party system v̂(t), given a vector of covariates x′, can be simulated by the

following algorithm (here, the superscript t indexes an iteration of the MCMC algorithm):

1. Draw a sample
(
β(t), w(t),γ(t)

)
;

2. Calculate the median predicted number of parties n̂ from the truncated negative binomial

distribution with the mean x′β(t) and the dispersion w(t). The median is calculated using

Monte Carlo method. We use the rejection sampling (?) to generate samples from the

truncated negative binomial distribution;
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3. Calculate µ̂(t) = x′γ(t);

4. Apply the transformation in (2) to the first n̂− 1 elements of µ̂(t), which will yield v̂(t).
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