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1 Siena ’s Continuous-Time Markov Model

In the network-analytic tradition, Snijders and colleagues (op. cit.) have advanced furthest

in empirical modeling of dynamic, endogenous contagion and selection.1 In Siena, N actors

are connected by an observed, binary, potentially endogenous, and time-variant matrix, x, of

ties, xij,t. A vector of N observed, binary behaviors, z, at time t has elements zi,t. Additional

exogenous explanators may exist at unit or dyadic level, vi,t or wij,t. Opportunities arise

for actors to change their network ties, switching at most 1 tie on or off, at continuous-time

fixed-rate, ρneti,t , according to an exponential model. Likewise, opportunities to switch or leave

unchanged the dichotomous behavior arise at rate ρbehi,t .2 When an opportunity to change

network ties arrives for some i, she may choose to switch on or off any one of her N -1 ties.

i makes these choices by comparing values of some objective function like:

fneti (x,x′, z) + εneti (x,x′, z) =
∑

h

{
βneth × sneth (i,x,x′, z)

}
+ εneti (x,x′, z) (1)
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where x′ is an alternative network under consideration, which can differ from the existing

network, x, only by changing one element of row i. Call fneti (·) the network-evaluation

function. sneth (·) is some statistic, i.e., some function of the data, x,x′, z, that reflects i’s ob-

jectives regarding network, x, and behaviors, z (ideally, substantively-theoretically derived).

The βneth to be estimated are the weights on these objectives. Assuming εneti extreme-value

distributed, independently across i and t, yields a multinomial-logit categorical-choice model.

Similarly, when a chance to change behavior arrives, i compares values of an analogous objec-

tive function under alternative actions (here, binary): switch to 1 or 0 or leave unchanged.

Formally, i compares z to z′ given x and zj 6=i. Again, the behavior-evaluation function,

f behi (·), is the summed product of weights, βbehh , and statistics, sbehh (·), and again assuming

i.i.d. extreme-value stochastic components (εbehi ), the logistic form emerges.3

The behavior and network objective-functions (and also the rate functions if desired)

can include any of a number of commonly supposed social-network phenomena. For instance,

importantly for our purposes, covariate-related dissimilarity, which is “defined by the sum

of absolute covariate differences between i and the others to whom he is related” (p. 371):

covariate-related dissimilarity: si(x) =
∑
j

xij|νi − νj|. (2)

Entering si(x) in the tie-formation equation with covariates νi and νj being i’s and j’s

behaviors gives a behavioral-homophilic (or, rather, heterophilic) selection term.

RSiena estimates such models by simulated method-of-moments (s-MoM). To elabo-

rate, the models’ parameters are ρ, the rates of events (or the parameters in the exponential

models thereof), and β, the parameters of the objective functions. The full parameter vec-

tor, θ, has dimensions k. As in any MoM estimator, one applies a statistic, Z = (Z1, ...,Zk),

such that θ is the solution of the k-dimensional moment equation: EθZ = z, where z is the

sample outcome. Minimally, one needs for Z some statistics that respond in known way to

the values of the parameters in question. (Sufficient sample-statistics would tend to opti-
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mize the moment-estimator efficiency, but sufficiency has not been established here.) Given

such a statistic, we can specify as moment conditions, ∂EθZk

∂θk
> 0, for the MoM estimator.4

E.g., for the rate from m to m + 1, ρm, a related (if insufficient) sample-statistic is the

observed-change count from m to m + 1, which tends to rise in ρm. Similarly, the sample

value of the objective-function statistics should relate to β. Estimated variance-covariances

for the parameter estimates are numerically computed by the delta method.5 These moment

equations may seem simple, but their conditional expectations are not generally calculable

explicitly. Siena uses stochastic-approximation methods: it simulates network-behavior out-

comes according to the processes of the proposed model and estimates the parameters of

that model by optimizing fit of simulated to observed sample-statistics.6

As a theoretical model and estimation strategy for actors’ simultaneous tie-formation

and behavioral choices, Siena is an impressive construct: not just state of, but the entire

corpus of, the art. Yet, one notices also the many caveats stressed (Snijders 2001):

• “Although in our experience these equations mostly seem to have exactly one solution,
they do not always have a solution” (p. 374).

• “This requirement [the minimal moment-conditions] is far from implying the statistical
efficiency of the resulting estimator, but it confers a basic credibility to [...it and...]
ensures the convergence of the stochastic approximation algorithm...” (p. 373).

• “...the method proposed here is not suitable for observations...too far apart in [...the
number of intra-observational changes]. For such [...cases, dependence of one obser-
vation on the previous...] is practically extinguished, and it may be more relevant to
estimate the parameters of the process [...separately]” (p. 374).

• “It is plausible that these estimators have approximately normal distributions, although
a proof is not yet available” (p. 375).

This is a small subset of the stressed cautions, concerns, and comments noting various

aspects of the estimation-strategy performance as unknown or maybe problematic, but we

do not highlight them as criticism. Siena seems the most-sophisticated and best-developed

tool capable of addressing coevolution, which we think is common and important in social

science, and its approach to modeling network formation and behavioral choice shares our
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emphasis on affording address of a theoretically and substantively central empirical challenge

for social science: the distinction and distinct estimation of common exposure, contagion, and

selection in generating social outcomes that ubiquitously exhibit network/spatial association.

Our point is instead to underscore how little is known regarding Siena’s performance as an

estimator. Understandably given its complexity, little has been proven analytically about

its properties; nor, also understandably given its computational demands and its specialized

implementing software until RSiena’s recent advent, has its performance been explored much

in Monte Carlo analysis. The next section’s Monte Carlo evaluation may even be the first.

2 Estimation-Strategy Evaluation and Comparison

Next, we evaluate and compare the performance of our simple proposed time-lagged spatial-

lag logistic-regression strategy and Siena’s simulated method-of-moments strategy for esti-

mating models of network-behavior coevolution, i.e., with contagion and selection.

3 The Data-Generating Process and the Monte-Carlo-Simulation
Scenarios

We follow Snijders (2001) to specify a data-generating process (DGP) replicating a Siena

model of coevolution with the behaviors of N actors contagious through a network of ties

generated by behavioral homophily. The DGP first creates T vectors, one for each interob-

servational period, of cumulative probabilities per microstep (intraobservational simulation

period) of network-change events from a negative-exponential distribution with hazard-rate

ρnet. A parallel procedure produces T vectors of cumulative behavior-event probabilities us-

ing hazard-rate ρbeh. Given these probabilities of events at each microstep, the DGP draws

the steps in which an actor considers a change in behavior and the steps where an actor

will make a network change. When an event occurs, each i is equally likely (a uniform(N)

random-draw) to be chosen to consider change.7 For an i selected to act on her network

ties, a multinomial-logit form, exp(f(xk))∑
j 6=k,i exp(f(xj))

, with f(xk) given by i’s network objective-
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function evaluated for a tie to k, gives the probability i changes her kth tie. A draw from

a multinomial distribution with this vector of probabilities (i’s objective function evaluated

at the current network matrix and behavior vector) then determines which of i’s ties is

changed. In our DGP, the objective function is covariate-related similarity (Ripley and Sni-

jders (2010) monadic covariate effect #39, p. 66): the sum of centered similarity scores,

sim(vij), between i and the j’s to whom i is currently tied. Using i’s and j’s behavior last

period, this metric gives the behavioral-homophily effect in network-tie formation. The co-

efficient (in this multinomial-logit network-tie equation) on covariate-related similarity is set

to 1. Analogously for a behavior event: an i drawn to consider changing behavior uses her

behavioral-objective function, g(x), in logistic form, exp(g(x))
1−exp(g(x)) , to compare the utility at the

current values of the network matrix and behavior vector of switching or keeping behavior.

In our DGP, g(x) is given by the average similarity effect, defined as the average of centered

similarity scores, with behavior again serving as the basis on which similarity is measured.

This makes behavior of i depend more on the behaviors of j’s with whom i is similar in

behavior. The coefficient on average similarity in this logit behavior-equation is set to 1.

Using this DGP, we generated 100 trials each of 8 different scenarios: varying the

number of actors N ∈ {30, 50}, the number of observed periods, T ∈ {5, 11}, and the rates

of event occurrence, ρnet = ρbeh ∈ {1, 5}. We set the vector of first-period behaviors to 1

(0) for the first (second) 1
2
N , and the initial network (spatial-weights matrix) such that each

actor is connected to the next actor with the same behavior, wrapping at the end. I.e., ones

are in the upper first-minor, elements (i, i+ 1), except for the 1
2
N th and the N th rows, where

ones are in the 1st and
(
1
2
N + 1

)st
columns. Thus 1 connects to 2, 2 to 3, etc., but the 1

2
N th

connects back to the 1st; that lower-right block diagonal then repeats that upper-left.

4 Monte-Carlo Simulations: Parameter-Estimation Performance

Tables 1 and 2 report Monte Carlo explorations of Siena and our simple spatial-logistic strat-

egy. We must re-emphasize first that the models differ: Siena’s estimation model mirrors
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the true DGP; our spatial-logistic simplification is a different model, differently parameter-

ized. The coefficient magnitudes are not directly comparable. Nevertheless, we start

by briefly discussing parameter-estimate performance before moving to the more-important

implied estimates of effects (responses to common counterfactuals).

On the network-selection side, Siena’s estimates of the homophilic-selection parame-

ter, βh, show little to no bias at small-T at either N or ρ. On the behavior-contagion side, at

the lower event-rate, βc shows a sizable (25%) deflation or negative bias in the smallest sam-

ple (N = 30, T = 5), but improvement to just −6% to −9% bias in the larger samples. At

this lower event-rate, βh (oddly) develops an appreciable −10% to −13% bias in the larger-T

samples. At the higher event-rate of Table 2, the same pattern of biases emerges, much more

severely: βh essentially unbiased at low-T , but −50% to −60% biased at T = 11; βc horribly

biased (−62%) at small-T and -N , improving to just badly (−22% to −32%) so in the larger

samples. The “correct” coefficient values in our spatial-logistic simplification are unknown,

so we cannot evaluate bias directly (although the notably smaller magnitudes per se are

not alarming because these parameter estimates would reflect a dampening from the event

rates). However, patterns in the relative magnitudes of parameter estimates across scenarios

may be informative. At Table 1’s lower-rate, we see something similar to Siena’s pattern:

the larger-T scenarios seem to dampen the estimates, slightly for the contagion and more

notably for the selection parameter, and especially at lower N . This may suggest that these

are properties of coevolution-model estimation rather than of the estimators. Table 2 sug-

gests that the difficulties raised by high rates of intraobservational event-occurrence—i.e., by

large amounts of interobservational change in networks and behaviors—may be debilitating:

parameter magnitudes plummet, in some cases past zero. This reminds of Snijders’ impor-

tant caveat: this method “...is not suitable for observations...too far apart in the sense of the

[...total number of changes between observations]. For such observations the dependence of

[...this observation on the previous...] is practically extinguished...” (p. 374).

Regarding efficiency, the standard deviations of the estimates across trials in Table 1,
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proportionately (i.e., considered in ratio to mean of the corresponding parameter-estimate),

reveal an appreciable advantage of our spatial-logistic simplification. This is particularly

notable on the behavioral-contagion side, where Siena seems to have greater difficulty. At

Table 2’s higher rate, standard deviations exceed mean parameter-estimates, sometimes

greatly, in all but one of eight cases for Siena and in five cases for the simple logits. Root

mean-squared error (RMSE) is only calculable for Siena; it (reassuringly) shows improve-

ments with sample size, but again raises alarms by its magnitudes in Table 2.

As for standard-error accuracy, at low event-rates (Table 1), either strategy seems

reasonably accurate; ratios of actual to estimated estimate-variability (overconfidence) range

from .82 to 1.07. Even at high rates (Table 2), our simple strategy remained passably honest

about its huge parameter-estimate variability: overconfidence ranging .83-1.145. Siena’s

standard errors were badly skewed across trials, occasionally exploding, necessitating report

of medians instead. The overconfidence scores may not therefore be comparable, but, ranging

.71-2.03, they seem to underscore further the unreliability at high event-rates.8

In many ways, the results for power (technically: share of trials in which standard

t-tests both parameters rejected at .05 level) are the most (depressingly) telling. At lower

event-occurrence rates, power grows with N and T , naturally and reassuringly, and to quite

appreciable size in the high-N , high-T case, although one could certainly wish for better, es-

pecially from Siena, which, after all, is the exactly correctly specified empirical model for this

DGP. Notwithstanding that fact, though, our simpler time-lagged spatial-lag logistic strat-

egy dominates in power, especially in the small-T samples. At the higher event-occurrence

rate, on the contrary, neither strategy could detect both the contagion and the homophily

actually present, even though these unit magnitudes are rather large substantively and, in

fact, are the only systematic source of variation in the outcomes. In sum, regarding power

as seen also for bias, efficiency, and standard-error accuracy: either estimator loses traction

badly in scenarios of high interobservational event-occurrence. Neither seems able to pro-

duce revealing estimates of coevolutionary processes from observations too sparsely dotted
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over much higher-frequency changes in network connections and node behavior. At lower

intraobservational event-occurrence rates, perhaps either could do so, but to evaluate that,

we need to consider the estimates in terms of their implied comparable substantive effects.

5 Monte-Carlo Simulations: Effect-Estimates Performance

To evaluate the relative performance of Siena and our simple logit, we must calculate esti-

mated effects on behavior or tie-formation by each estimator of some common hypothetical.

We consider the following hypothetical regarding contagion. If all i’s network partners

behave in one way (all 0 or 1), what are the odds that i will choose the network-consistent

over the network-inconsistent behavior? In the Siena DGP, we can get these odds thus:

if all i’s ties are initially to dissimilar behavior-types (so her average-similarity score is 0)

and i switches her behavior to match her network partners, her average-similarity will go to

1, and the corresponding odds of going from inconsistent to consistent behavior, assuming

i is chosen to act, are exp(βbeh) to 1 (≈ 2.714). In the simple-logit model, if i’s network

partners switch their behavior from all-0 to all-1, then for i, behavior 1 likewise goes from

being network inconsistent to network consistent, and the odds of choosing behavior 1 gives

the equivalent contagion effect, here as the spatial lag variable goes from 0 to 1.

For a comparable homophilic-selection effect of behavioral-similarity on network ties,

we ask: what are the odds that i will choose to connect to another actor who behaves

similarly over to one who behaves dissimilarly? In the Siena model, if all i’s ties are between

dissimilar behavioral types (average-similarity 0), choosing to connect to a similar behavior-

type increases covariate-(behavior)-related similarity from 0 to 1, and the odds of forming

such a tie (relative to choosing a tie with a dissimilarly behaving actor) are exp(βnet) to

1. In the simple logit model, an indicator variable turns on (off) when a potential network

partner behaves similarly (dissimilarly), so the relevant odds calculation is straightforward.

Several issues remain. First, the Siena effects described above assume that i is chosen

to make a behavioral or network change, but not all actors will be selected in that DGP. With
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rate of event-occurrence set to 1, the probability an actor i is selected during an interobserva-

tional period is about .63 (the negative-exponential cumulative-distribution evaluated at 1).

The selection-adjusted odds-ratio is .63×2.714 = 1.71. Second, the logit models are dynamic

in a way the Siena DGP is not. Specifically, the logit parameter-estimates determine tran-

sition probabilities for a first-order Markov chain. Accordingly, the comparable odds-ratios

would derive from the steady-state (stationary) distribution of the Markov chain. Finally,

even with these adjustments, the logit models are still misspecified, especially the network

model, because the true DGP only allows actors to make one change at a time, a restriction

the simple logits do not impose. Consequently, the logit model will likely underestimate

the size of the relevant selection effects. Many ties that would have formed among similarly

behaving actors absent this restriction, will not be formed in the Siena DGP.

Table 3 compares these behavioral-homophilic selection and behavioral contagion

effects using the estimates from the lower event-occurrence rate scenarios of Table 1. We

provide the mean effect-estimate and the standard deviation and root-mean-squared-errors

(RMSE) for these estimates. The relative efficiency we saw in estimating the structural

parameter estimates transfers to the effects estimates. While the mean Siena effect-estimates

frequently exhibit less bias, the simple logistic strategy outperforms the Siena estimates

across the board in RMSE terms, often by large margins. In the small-sample case (N=30,

T=5), e.g., the RMSE from the simple-logit model for behavior-homophilic selection-effect

is a little over 1
5

the size of corresponding RMSE calculated from the Siena estimates.

6 Summarizing the Monte Carlo Results

We can conclude generally on several points. First, data from contexts with higher event-

rates, i.e., where intraobservational changes in networks and behavior are likely to have

been great, seem unamenable to reliable estimation by either strategy of coevolutionary

processes, to say the very least. At lower rates, either estimator reports reasonably honestly

about the certainty of its estimates. Siena seems essentially unbiased in lower-T samples
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but suffers some downward or deflationary bias in its estimates at larger T (oddly), even in

these better-suited low-rate conditions. This is true in the effects calculations as well. The

bias in the spatial-logistic effect-estimates also roughly parallel the estimate-magnitude’s

decreasing with T , suggesting a similar (strange) “large-T bias” there. On the other hand,

the simpler spatial-logistic strategy has somewhat of an edge in efficiency and, thereby, in

power, with this advantage growing more-noticeable with lower T and smaller samples. The

same holds for the effects estimates. The upshot of all this seems to be: neither strategy

can offer much hope of learning anything reliable in almost any regard about coevolution

when event-rates are high–which may be discernable by high amounts of change in networks

and/or behaviors between observational periods that seem substantively far apart in that

actors could have undertaken many actions in the interim. At low event-rates, conversely,

both strategies work generally acceptably and roughly comparably well, with an efficiency

advantage and simplicity perhaps favoring the logistic strategy.
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Notes

1Wasserman (1980b,a), Leenders (1997) presage. Bayesian latent-space approaches to

longitudinal networks (Hoff et al. 2002; Hoff and Ward 2004; Hoff and Westveld 2007) may

also relate.

2Although Siena can accommodate richer parameterizations, both ρ are held constant

across i but allowed to differ arbitrarily by t here. These rates of intra-observational event-

occurrence can vary freely, so the assumption of one i making one 1-unit change at a time is

inconsequential. The strong assumption (we also make) of conditional independence of the

choices does remain though.

3Siena 4.0 also has a gratification function, which we ignore, that considers alternative net-

works in changes, not levels. This allows different effects for switching ties on vs. off. Gratifi-

cation is otherwise identical to the text’s objective, so it merely adds a third multinomial-logit

to the model.

4In fact, a quadratic of the moment condition must hold also, giving a (typically more

efficient) generalized MoM, G-MoM, estimator, a′
(
∂EθZk

∂θ

)
a > 0 , ∀a.

5Conditioning on previous observations rather than using those moment equations can

greatly reduce the problem dimensionality, which grows combinatorially in M and ρ.

6See Snijders (2001) and Ripley and Snijders (2010) for estimation-procedure details and

options.
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7Had we instead parameterized the rate, i’s probability of being chosen to act would be

weighted by the ratio of hazard-function value for i, ρi, to the average ρ at that step.

8We also conducted (not reported) test-size analyses for behavioral contagion (H0 : βc =

0) and behavior-homophilic selection (H0 : βs = 0) in the lower-rate case. Both estimators

yielded accurately-sized tests; i.e., with contagion, homophily, or both stripped from the

DGP, the estimators rejected 5% of the 0.05-level tests that those coefficients were zero.
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Table 1: Monte Carlo Results for Ratenet = Ratebeh = 1

Sample: N=30, T=5 Sample: N=30, T=11
Parameter Result SIENA Simple

Logit
Parameter Result SIENA Simple

Logit

Network Mean 0.998 0.464 Network Mean 0.870 0.385
Selection S.D. 0.561 0.197 Selection S.D. 0.305 0.113

RMSE 0.561 – RMSE 0.332 –
Mean S.E. 0.662 0.193 Mean S.E 0.319 0.121
Overconfidence 0.848 1.020 Overconfidence 0.956 0.933

Behavior Mean 0.744 0.752 Behavior Mean 0.918 0.75
Contagion S.D. 0.770 0.648 Contagion S.D. 0.437 0.459

RMSE 0.811 – RMSE 0.445 –
Mean S.E. 0.882 0.604 Mean S.E 0.533 0.444
Overconfidence 0.874 1.070 Overconfidence 0.818 1.03

Power 0.03 0.19 Power 0.30 0.34

Sample: N=50, T=5 Sample: N=50, T=11
Parameter Result SIENA Simple

Logit
Parameter Result SIENA Simple

Logit

Network Mean 0.996 0.473 Network Mean 0.899 0.405
Selection S.D. 0.400 0.156 Selection S.D. 0.237 0.1

RMSE 0.400 – RMSE 0.258 –
Mean S.E. 0.385 0.149 Mean S.E 0.244 0.093
Overconfidence 1.040 1.050 Overconfidence 0.969 1.070

Behavior Mean 0.942 0.801 Behavior Mean 0.928 0.768
Contagion S.D. 0.599 0.473 Contagion S.D. 0.466 0.343

RMSE 0.602 – RMSE 0.472 –
Mean S.E. 0.622 0.465 Mean S.E 0.441 0.347
Overconfidence 0.962 1.020 Overconfidence 1.060 0.991

Power 0.29 0.41 Power 0.57 0.62
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Table 2: Monte Carlo Results for Ratenet = Ratebeh = 5

Sample: N=30, T=5 Sample: N=30, T=11
Parameter Result SIENA Simple

Logit
Parameter Result SIENA Simple

Logit

Network Mean 1.026 0.088 Network Mean 0.424 -0.007
Selection S.D. 1.845 0.096 Selection S.D. 0.457 0.574

RMSE 1.845 – RMSE 0.735 –
Mean S.E. 0.907* 0.096 Mean S.E 0.646* 0.537
Overconfidence 2.034 1.000 Overconfidence 0.707 1.070

Behavior Mean 0.383 -0.074 Behavior Mean 0.68 0.065
Contagion S.D. 1.802 0.769 Contagion S.D. 0.698 0.055

RMSE 1.905 – RMSE 0.768 –
Mean S.E. 1.283* 0.684 Mean S.E 0.881* 0.061
Overconfidence 1.405 1.123 Overconfidence 0.792 0.911

Power 0 0 Power 0 0.01

Sample: N=50, T=5 Sample: N=50, T=11
Parameter Result SIENA Simple

Logit
Parameter Result SIENA Simple

Logit

Network Mean 0.982 0.085 Network Mean 0.504 0.082
Selection S.D. 1.165 0.065 Selection S.D. 0.406 0.036

RMSE 1.165 – RMSE 0.641 –
Mean S.E. 0.916* 0.070 Mean S.E 0.518* 0.044
Overconfidence 1.272 0.933 Overconfidence 0.784 0.826

Behavior Mean 0.778 -0.005 Behavior Mean 0.681 0.023
Contagion S.D. 0.827 0.621 Contagion S.D. 0.747 0.494

RMSE 0.856 – RMSE 0.812 –
Mean S.E. 1.200* 0.543 Mean S.E 0.810* 0.435
Overconfidence 0.689 1.145 Overconfidence 0.922 1.135

Power 0 0.02 Power 0.01 0.03

*: Median standard error estimate reported.
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Table 3: Monte Carlo Simulation Results for Comparable Effects (True Effect = 1.72)

Sample: N=30, T=5 Sample: N=30, T=11
Parameter Result SIENA Simple

Logit
Parameter Result SIENA Simple

Logit

Network Mean 2.068 1.512 Network Mean 1.580 1.410
Selection
CF

S.D. 1.836 0.320 Selection
CF

S.D. 0.491 0.172

(0 → 1) RMSE 1.869 0.381 (0 → 1) RMSE 0.510 0.353

Behavior Mean 1.763 1.800 Behavior Mean 1.732 1.735
Contagion
CF

S.D. 1.621 0.922 Contagion
CF

S.D. 0.740 0.577

(0 → 1) RMSE 1.622 0.926 (0 → 1) RMSE 0.740 0.577

Sample: N=50, T=5 Sample: N=50, T=11
Parameter Result SIENA Simple

Logit
Parameter Result SIENA Simple

Logit

Network Mean 1.865 1.539 Network Mean 1.598 1.462
Selection
CF

S.D. 0.874 0.268 Selection
CF

S.D. 0.392 0.145

(0 → 1) RMSE 0.886 0.323 (0 → 1) RMSE 0.410 0.294

Behavior Mean 1.951 1.761 Behavior Mean 1.778 1.716
Contagion
CF

S.D. 1.353 0.598 Contagion
CF

S.D. 0.854 0.438

(0 → 1) RMSE 1.373 0.600 (0 → 1) RMSE 0.856 0.438
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