
Online Appendix

A Supplementary Results

A.1 RMSE for Estimator and Model Comparison

In this section we report some additional statistical results. We begin with the RMSE1 for all the
models in Table 1. It is immediately clear that the LDV model performs much worse than all the
other methods of estimation under this set of experimental conditions (except OLS with a second
lag of Yt). The RMSE for the LDV model is around 0.28 while for the other models the RMSE was
typically 0.10. The RMSE for the LDV model is the same regardless of whether the DGP is static
or weakly dynamic. The ARMA model has the lowest RMSE; however, the difference between the
ARMA model and the GLS models is trivial. We also see that the effect of the omitted variable
bias in the OLS model without an LDV is clearly discernible in the RMSE. While the RMSE for
OLS without an LDV is quite low when the DGP is static, the RMSE triples from 0.16 when the
model is static to 0.46 once α is 0.50.

Table 1: Comparative Root Mean Squared Error (RMSE) For Static to Weakly Dynamic DGP

α

Model 0.00 0.10 0.20 0.50
LDV 0.284 0.298 0.287 0.282
ARMA 0.097 0.093 0.101 0.122
GLS-Cochrane 0.099 0.097 0.103 0.149
OLSa 0.163 0.177 0.177 0.456
GLS-Prais 0.098 0.100 0.102 0.148
2LDV 0.283 0.294 0.282 0.287
RMSE for β, Coefficient of Xt.
See Appendix For Model Details.
Results are based on 1000 Monte Carlo
replications.
φ: 0.75; ρ: 0.95
a Does not include any lags.

Table 2 contains the RMSE for when the DGP is dynamic. We start with the RMSE for the
situation in which there is no residual autocorrelation in the error term. Under this condition, OLS
with an LDV should be consistent. While we do not assess the fit of the LDV model improves as
the sample size increases in this experiment, the LDV model performs well even in this relatively
small sample (100). The LDV model has the lowest RMSE of all the models estimated, being much
lower than that of OLS without an LDV and the two GLS models (0.07 compared to 1.0 and 0.45,
respectively). The question, though, is whether the LDV model provides superior estimates once
the error term is no longer IID?

1More specifically, the RMSE is:
√∑1000

l=1 (θ̂ − θ)2. The RMSE calculation, here, only includes β the parameter
associated with the Xt variable.
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Table 2: Comparative RMSE For Dynamic DGP

φ

Model 0.00 0.10 0.20 0.50
LDV 0.071 0.072 0.076 0.126
ARMA 0.123 0.122 0.122 0.128
GLS-Cochrane 0.447 0.420 0.391 0.296
OLSa 1.033 1.035 1.037 1.056
GLS-Prais 0.453 0.427 0.398 0.302
2LDV 0.073 0.073 0.083 0.163
RMSE for β, Coefficient of Xt.
See Appendix For Model Details.
Results are based on 1000 Monte Carlo
replications.
α: 0.75; ρ: 0.95
a Does not include any lags.

While the analytic results tell us that OLS is inconsistent, the substantive size of the problem
appears to be relatively small. Specifically, the RMSE for the LDV model increases only slightly
(from 0.071 to 0.072) once a small amount of autocorrelation is introduced into the error term. It is
only when the error term is strongly autoregressive, φ = 0.50, that the ARMA model approximates
the performance of OLS with an LDV. The GLS models and OLS without an LDV are clearly
dominated by the other models. The RMSE for the two GLS models (Cochrane and Prais) is, on
average 5-6 times higher than that of the LDV model. The RMSE for OLS without an LDV is
nearly 30 times larger than the LDV model. The omission of dynamics from these models induces
serious specification bias.

A.2 Full Rejection Rate Tables

Here we include the full results from the tests for the rejection rates. Table 3 contains the percentage
of times that we conclude that Xt has no statistically significant effect on Yt despite the true effect
being 0.50 (the percentage of times we make a Type II error).

A.3 Full Results for Total Effect

In Table 4 we present the bias in the long-run multiplier or total effect of Xt on Yt under all the
conditions we used in the second Monte Carlo analysis. Generally, the bias is larger than that of
the initial effect, particularly when φ is 0.50.

B Stationarity Proof

We prove that the sum of α and φ must be less than the absolute value of 1 for the model to be
stationary. As usual we start with the following DGP:
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Table 3: Rejection Rate For β̂, The Coefficient Of X

φ = 0.00
N ρ 0.65 0.75 0.85 0.95
25 13.90 9.80 8.20 05.60
50 0.70 1.40 0.30 0.00
75 0.00 0.10 0.00 0.00
100 0.00 0.00 0.00 0.00
250 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 0.00

φ = 0.10
N ρ 0.65 0.75 0.85 0.95
25 16.90 14.20 10.30 9.20
50 1.30 1.50 0.40 0.30
75 0.10 0.00 0.00 0.00
100 0.00 0.00 0.00 0.00
250 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 0.00

φ = 0.20
N ρ 0.65 0.75 0.85 0.95
25 17.80 14.80 10.00 11.30
50 1.80 1.30 0.60 0.70
75 0.60 0.00 0.00 0.00
100 0.00 0.00 0.00 0.00
250 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 0.00

φ = 0.50
N ρ 0.65 0.75 0.85 0.95
25 28.5 22.00 20.20 20.00
50 8.20 6.30 4.70 2.70
75 2.40 1.70 1.10 0.70
100 0.50 0.50 0.10 0.00
250 0.10 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 0.00
Results are based on 1000 Monte Carlo replications.
Cell entries represent the percentage of time we
fail to reject β̂ = 0.
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Table 4: Bias, As A Percentage, In The Long Run Multiplier Effect of Xt

φ = 0.00
N ρ 0.65 0.75 0.85 0.95
25 −6.07 −1.41 −6.77 −5.85
50 −5.57 −4.02 −2.20 −2.24
75 −4.55 −3.21 −2.22 −2.33
100 −3.77 −3.09 −1.44 −1.25
250 −1.12 −0.18 −0.85 −0.38
500 −0.05 −0.21 −0.09 −0.09
1000 −0.53 −0.06 0.31 −0.11

φ = 0.10
N ρ 0.65 0.75 0.85 0.95
25 0.96 −0.89 −0.61 −0.38
50 3.99 1.36 1.35 −0.01
75 3.69 2.90 2.01 1.47
100 4.73 1.49 2.07 0.71
250 6.07 4.58 2.33 1.21
500 6.26 4.46 2.67 0.91
1000 6.54 4.45 2.52 0.85

φ = 0.20
N ρ 0.65 0.75 0.85 0.95
25 −28.66 27.66 12.04 4.69
50 12.68 12.33 6.82 3.33
75 12.62 10.91 5.38 3.84
100 13.63 10.32 6.44 2.49
250 14.73 11.04 6.34 2.24
500 14.39 11.13 6.53 2.37
1000 14.98 11.01 6.22 2.07

φ = 0.50
N ρ 0.65 0.75 0.85 0.95
25 15.68 144.78 39.92 91.08
50 11.16 52.89 39.03 26.12
75 67.95 50.41 34.71 18.76
100 66.76 49.20 32.02 16.10
250 64.25 46.80 28.46 10.85
500 63.11 45.32 27.40 9.56
1000 62.61 45.15 26.44 8.31
Results are based on 1000 Monte Carlo replications.
Cell entries represent the average percentage
of bias in the long run effect of Xt.
Long-Run Effect: β

1−α
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yt = αyt−1 + ε

εt = φεt−1 + vt (1)

The addition of an explanatory variable makes no difference to the proof, so we leave it out for

clarity. With the above equations, we can substitute in equivalent terms and rearrange to produce

the following time series process:

yt − αyt−1 = φ(yt−1 − αyt−2) + vt

yt = (φ + α)yt−1 − φαyt−2 + vt (2)

The DGP is clearly an AR 2 process and the sum of (φ + α) and −φα must be less, in absolute

value, than 1 for the process to be stationary given the stationarity conditions for an AR process.

C Estimator Notation and Details

Here, we provide a more detailed overview of the estimators we use in the model comparison section

of the paper. We, first, outline the Cochrane-Orcutt and Prais-Winsten estimators simultaneously

since the two are closely related. The reader should note that Cochrane-Orcutt is asymptotically

equivalent to estimating a model with AR(1) errors via Non-Linear Least Squares, and Prais-

Winsten is asymptotically equivalent to estimation via full information maximum likelihood. For

both procedures with a single covariate, we estimate with OLS:

yt = axt + c + ut (3)

An estimate of ρ, the correlation in the residuals, is obtained by estimating the following auxiliary

regression:

ut = ρut−1 + et (4)

We apply a Cochrane-Orcutt transformation to equation 3, and the estimate of ρ is used to now
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estimate:

yt − ρyt−1 = a(xt − ρxt−1) + c(1− ρ) + et (5)

Clearly in equation 5 observation 1 will be lost. The transformation for t = 1 is:

√
1− ρ2y1 = a(

√
1− ρ2x1) + c

√
1− ρ2 +

√
1− ρ2et (6)

The difference between Cochrane-Orcutt and Prais-Winsten is Cochrane-Orcutt does not trans-

form the first observation as in equation 6, and it is lost. As such, Cochrane-Orcutt regression is

somewhat less efficient than Prais-Winsten. The above steps are iterated until the estimate of ρ is

within a specified tolerance.

The other estimator we used was an ML routine for ARMA(p,q) models. Here, the likelihood is

computed via a state space representation of the ARMA process; innovations and their variances are

found with a Kalman filter. See Hamilton (1994) for more details. The notation for the estimator,

while not complex, is fairly lengthy, but is standard in most statistical software packages. Finally,

we used OLS with varying numbers of lags of the dependent variable on the right-hand side. In

the model comparison section, we compare OLS without any lags of Yt on the right-hand side to

models with one or two lags of Yt on the right-hand side. Each time, however, OLS is applied to

the equation regardless of the number of lags included in the estimating equation.

Finally, why not include quasi-instrumental variables among the estimators? First, we don’t

want to encourage the use of two-stage least squares. Second, the quasi-instruments approach

is particularly problematic given our research design. In choosing an instrument for the lag of

Y, we could either use lags of X or some Z variable. To make either one of these variables into

quasi-instruments would require making the instrument correlated with the error term of Y. Such

a correlation would of course introduce some bias into the estimates. It would then be impossible

to know how much of the bias was caused by the correlated errors as opposed to the autocorrelated

errors. Moreover, we would have to make arbitrary decisions about the level of correlation between

the instrument and the error term. This would introduce another parameter to vary making the
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quasi-instrument estimates non-comparable to the other estimates. Moreover, the general reason

to use quasi-instruments is for gains in efficiency at the cost of some bias. Here, efficiency is not

the question, so we see no reason to include a quasi-instruments approach.

D The Effect of Model Fit

How well a model fits can also affect the overall performance of an estimator. To investigate how

the model fit affected the performance of LDV models, we replicated the Monte Carlo analysis

under three additional conditions. Here, we varied the value of β. The first value we used for β

was 0.00. The reason we set β to 0.0 for the first condition differs from just assessing the effect of

model fit. While the problem of spurious correlations generally does not occur with stationary data

(as the data here are), in small sample sizes the problem of a spurious relationship can occur when

Xt and Yt both trend for the sample under observation. A lagged dependent variable can alleviate

this problem. By setting β to 0.00, we can observe whether such spurious correlations occur when

the residuals are autocorrelated. In Table 5, we report the bias but not as a percentage, since we

can’t divide by zero. Clearly, with the lag, one fails to find much in the way of spurious effects,

since even when Xt is highly autoregressive, the estimated effect is zero.

In the second condition, we set β to 0.10 and in the third to 1.50. Here, we can observe if the

size of the effect of Xt on Yt matters. The results from these analyses are in Tables 6 and 7. In

general, the results mirror those reported earlier. If the value of φ is 0.00 the estimates will be

highly precise as the sample size increases regardless of how strong the effect of Xt is on Yt. Not

surprisingly, strong effects are more impervious to the bias present in LDV models. Smaller effects

are always harder to find and the bias exacerbates this to some extent.

The overall fit of the models did not, except by sample size, vary much. Moreover, the overall

model fit as summarized by the adjusted R2 was not related to the amount of bias in the model. For

the models where β = 1.5, the smallest average adjusted R2 was .90 for 25 cases and was generally

higher, even when the bias was fairly high under the φ = 0.50 condition. When β was 0.10 the

adjusted R2 often was quite low even when the bias was quite small. For example, when φ was

0.00 and the bias very small, the adjusted R2 was as small as .38 for 25 cases and grew to .57 for
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Table 5: Bias in β̂, the coefficient of Xt With β set to 0.00.

φ = 0.00
N ρ 0.65 0.75 0.85 0.95
25 0.01 0.001 0.008 -0.003
50 -0.002 0.0009 -0.0002 0.003
75 -0.003 -0.0007 -0.00007 -0.001
100 -0.002 -0.0009 -0.001 -0.002
250 0.003 0.006 -0.001 -0.0008
500 0.002 0.002 0.0008 0.00002
1000 -0.0005 0.00002 -0.0005 -0.00004

φ = 0.10
N ρ 0.65 0.75 0.85 0.95
25 -0.002 -0.007 -0.01 -0.009
50 -0.002 -0.002 0.00008 0.0003
75 -0.0001 -0.002 0.003 0.004
100 -0.0003 -0.008 0.0002 -0.0004
250 0.0005 0.002 -0.0002 0.0007
500 0.0005 0.0008 0.0003 0.0002
1000 -0.000007 -0.0009 -0.0005 0.00005

φ = 0.20
N ρ 0.65 0.75 0.85 0.95
25 0.004 0.0006 0.01 -0.004
50 -0.0009 0.006 0.00002 0.001
75 0.002 0.005 -0.002 0.001
100 -0.003 -0.0008 -0.002 -0.0009
250 0.0009 0.001 0.0005 -0.0006
500 -0.001 0.002 0.001 0.0009
1000 -0.0006 0.001 -0.00005 0.0004

φ = 0.50
N ρ 0.65 0.75 0.85 0.95
25 -0.02 0.005 0.02 -0.005
50 0.005 -0.0007 -0.007 0.004
75 -0.004 -0.003 -0.001 0.0001
100 0.002 -0.002 -0.003 0.0009
250 -0.002 0.002 -0.0009 0.00004
500 -0.0005 -0.0003 -0.00009 0.00008
1000 -0.002 -0.0009 0.0001 -0.0003
Results are based on 1000 Monte Carlo replications. Cell
entries represent the average bias in the estimated
coefficient.
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Table 6: Bias in β̂, the coefficient of X1 With β set to 0.10

φ = 0.00
N ρ 0.65 0.75 0.85 0.95
25 23.62 28.24 29.34 26.96
50 5.62 10.83 13.75 25.38
75 2.46 7.02 10.04 15.07
100 2.60 5.36 7.40 9.56
250 4.50 3.80 1.91 4.79
500 2.85 3.29 2.70 2.82
1000 −0.67 0.59 0.24 1.41

φ = 0.10
N ρ 0.65 0.75 0.85 0.95
25 7.79 5.48 7.26 14.27
50 5.76 3.66 7.52 10.75
75 0.81 −1.32 6.21 8.18
100 −0.74 −7.89 0.08 0.19
250 −2.48 −1.58 −5.15 −5.70
500 −3.38 −4.51 −6.48 −9.27
1000 −4.47 −6.79 −8.32 −10.53

φ = 0.20
N ρ 0.65 0.75 0.85 0.95
25 −8.40 −9.46 −10.74 −12.20
50 1.14 0.67 −0.09 0.18
75 4.11 4.23 3.29 2.95
100 5.88 5.79 5.58 4.36
250 8.27 8.14 7.93 7.72
500 9.16 8.99 8.87 8.34
1000 9.59 9.44 9.24 8.91

φ = 0.50
N ρ 0.65 0.75 0.85 0.95
25 −14.02 7.55 21.99 −6.12
50 −2.55 −10.99 −20.27 −15.34
75 −14.89 −17.83 −22.18 −28.50
100 −11.22 −19.99 −26.58 −30.99
250 −19.27 −21.15 −32.48 −42.90
500 −19.09 −25.31 −34.07 −46.76
1000 −21.49 −26.88 −35.03 −49.05
Results are based on 1000 Monte Carlo replications.
Cell entries represent the average percentage of bias in
the estimated coefficient.
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Table 7: Bias in β̂, the coefficient of X1 With β set to 1.50

φ = 0.00
N ρ 0.65 0.75 0.85 0.95
25 2.12 2.56 2.83 2.24
50 0.79 0.94 0.92 1.39
75 0.43 0.59 0.53 0.94
100 0.33 0.57 0.32 0.31
250 0.38 0.24 0.19 0.15
500 0.21 0.27 0.11 0.10
1000 0.06 0.00 0.09 0.13

φ = 0.10
N ρ 0.65 0.75 0.85 0.95
25 1.39 1.24 1.33 1.20
50 0.55 0.30 0.77 0.83
75 0.21 −0.09 0.48 0.32
100 −0.01 −0.38 0.03 −0.05
250 −0.35 −0.23 −0.37 −0.38
500 −0.49 −0.42 −0.46 −0.43
1000 −0.56 −0.66 −0.59 −0.48

φ = 0.20
N ρ 0.65 0.75 0.85 0.95
25 1.70 1.32 1.85 1.42
50 0.27 0.55 0.23 0.33
75 −0.05 −0.09 −0.53 −0.17
100 −0.87 −0.62 −0.88 −0.41
250 −1.05 −1.05 −1.04 −0.95
500 −1.24 −1.16 −1.15 −1.11
1000 −1.28 −1.22 −1.32 −1.15

φ = 0.50
N ρ 0.65 0.75 0.85 0.95
25 1.69 1.31 1.85 1.42
50 0.26 0.55 0.23 0.33
75 −0.05 −0.09 −0.53 −0.18
100 −0.87 −0.62 −0.88 −0.41
250 −1.05 −1.05 −1.04 −0.95
500 −1.24 −1.16 −1.15 −1.11
1000 −1.28 −1.22 −1.32 −1.16
Results are based on 1000 Monte Carlo replications.
Cell entries represent the average percentage of bias
in the estimated coefficient.
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500 cases. So in general, the overall model fit was roughly indicative of how well OLS estimated

the coefficients.
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