
Supplementary Material to Massam et al. A comparison of annual layer thickness model estimates 

with observational measurements using the Berkner Island ice core, Antarctica. 

Annual Layer Thickness Model 

A model estimates how the annual layer thickness of a deposited layer, λM, varies with depth, z.  This 

is calculated by reconstructing the past accumulation history for the ice-core site and accounting for 

the vertical compaction of the ice column as more ice is deposited above. 

An initial accumulation profile, Ai(z), is calculated by assuming snow deposition is proportional to the 

derivative of the mean saturation vapour pressure at the inversion layer with respect to the 

temperature at the inversion layer in the atmosphere, TI (K) (Parrenin et al., 2001; 2004; Schwander 

et al., 2001).  Inversion temperature is determined through an empirical relationship (Connolley, 

1996) before accumulation is calculated using the following relationships (S1): 

 
A𝑖(z) = Aθ  ∙

f(TI)

f(TI
θ)

; 
(S1) 
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d

dT
[
𝑃𝑆(T)

T
] 

(S2) 

For which T = TI, and similarly f(TI
) uses the modern mean inverse temperature.  Ps(T), the 

saturation vapour pressure function of temperature, is calculated through an exponential 

relationship for which AS = 3.64149 · 1012 Pa, and BS = 6148.3 K (two constants taken from 

Smithsonian tables; a best fit to the empirical curve of PS over ice in the temperature range -60 - 

20°C). 

 
𝑃𝑆(T) = 𝐴𝑆 ∙ exp−

𝐵𝑆
T  

(S3) 

As a result, a change in accumulation is assumed to be proportional to a change in temperature, as 

inferred by the meteoric water line (MWL) (Dansgaard 1953, 1964).  Accumulation history is 

optimised as part of an inverse approach by estimating a perturbation profile, (z), accounting for 

any inaccuracies in the assumptions made in the Clausius-Clapeyron relationship. 

 𝐴(𝑧) =  𝐴𝑖 ∙ [1 +  𝜀(𝑧)] (S4) 



A thinning function is reconstructed to estimate the down-core compaction of each annual layer.   

Using Lliboutry’s approximation of vertical strain as a one-dimensional model (Lliboutry 1979), a 

shape function is calculated in terms of ζ, a non-dimensional vertical coordinate defined as ζ = ẑ /H, 

where ẑ is the depth below the surface, and H is the total ice sheet thickness.  The model 

incorporates the Shallow Ice Approximation (SIA) and Glen’s flow law to estimate the vertical 

velocity of an ice particle (Parrenin et al. 2007).   

 η(ζ) = s ∙ ζ + (1 − s) ∙ ηD(ζ); (S5) 

η(ζ) can be used as a simplistic shape function of vertical thinning, discounting temporal variations 

such as changes in ice sheet thickness as the ice sheet is assumed stable throughout the period of 

analysis.  In eq. S5, s is the sliding ratio (1 for no sliding and 0 for full sliding) and ηD (ζ) is the vertical 

profile of deformation.   ηD(ζ) is calculated using the p-parameter, p = n − 1 + kGθH, where n is 

Glen’s exponent, Gθ is the linear temperature profile of the ice sheet, and k =  
Q

RTB
2  is an Arrhenius-

like constant that uses the activation energy, Q, the gas molar constant, R, and the temperature at 

the bedrock, TB (Parrenin & Hindmarsh 2007). 

 
ηD(ζ) = 1 −  

p + 2

p + 1
 (1 − ζ) + 

1

p + 1
(1 − ζ)p+2; 

(S6) 

The age of a particle of ice at a specific depth is equal to the number of annual layers that lie above 

this depth.  Net annual layer thickness is the product of the accumulation reconstruction with a 

thinning function applied (eq. S7).  The optimised, a posteriori shape function is calculated by 

iterating the value of the p-parameter in order to find the best-fit profile.   

 λM(z) = A(z) ∙ η(z); (S7) 

An integration with respect to depth from the surface of the inverse of the annual layer thickness 

will give an age-depth profile for the ice core as the sum of the mean annual layers from a specified 

depth to the surface. 



Translated mathematically, in a hypothetical situation where a model G is calculated using poorly-

known parameters, an inverse approach can improve the accuracy of the estimations by searching 

within parameterized bounds of a model space to fit a set of observations.  The inverse method will 

calculate the poorly-known parameters while the model is iterated in order for the output, m, to fit a 

set of observational parameters on the model space, d.   Mathematically defined, 𝐺: 𝑀 →  𝐷, where 

M is a matrix for which each 𝑚 ∈ 𝑀, and the independent information, d, can be ascribed to: 

𝑑 =  𝐺(𝑚) ∈ 𝐷 (Tarantola, 1987; Parrenin et al., 2001).   

In the construction of age-depth profiles, the aim of the inverse approach is to examine the 

difference between an empirically-calculated age-depth model and a posteriori age-depth profile.  

By examining the disagreement, any differences between the two profiles may reflect (i) 

simplifications adopted within the modelling process, or (ii) inadequacies in the distribution of the 

age constraints.  To achieve this, a Monte-Carlo sampling technique has been prescribed to 

systematically explore the model manifold.  Mathematically, the inverse method tries to infer the 

optimal information from i) the estimated values for observational datapoints, or a priori 

information, ρD, ii) the estimated values extracted from the model, ρM, iii) the relationship between 

ρD and ρM given by the model G (Parrenin et al., 2001).  Optimal information, given by the model, is 

presented as a posteriori probability density, σD and σM for the data and model manifolds, 

respectively.  Tarantola (1987) presents this relationship as: 

 
σM(m) =  ρM(m)

ρD(G(m))

µD (G(m))
 

(S8) 

 
σD(d) =  

ρD(d)

µD(d)
∫ δ(d − G(m)) ρM(m) dm

M

 
(S9) 

 

For which µD(d) and µM(m) are the homogenous probability densities (or noninformative probability 

densities) on the data and model manifolds, respectively.  The array E(m) analyses the difference 

between ρD(d) and ρM(m) and is calculated per iteration of the model G.  In the inverse method, it is 

used quantify the deviation of each iterated model output, m, with respect to the observational 

parameters, d, for which low values that suggest a good-fit of model parameters are preferred over 

higher values.  This is calculated using a root mean square error approach below: 

 
E(m) =

1

𝑛
 ∑(𝜌𝐷(𝑑)𝑖 − 𝜌𝑀(𝑚)𝑖)2

n

i=1

 
(S10) 



 

For the Berkner Island ice core, table S1 outlines the parameters used in the annual layer thickness 

model, with the known-age horizons outlined in table S2: 

Table S1: List of parameters and the values used in calculating the annual layer thickness in the Berkner 
Island ice core, Weddell Sea. 

Variable Value 

Aθ 0.185 m yr-1 

H 948 m 

TB
 262 K 

TS 247 K 

n 3 

Q 60 kJ mol-1 

 

 

Table S2ː Known-age horizons along the Berkner Island ice core with associated error 

Depth (m) Age (ka BP) Error (ka BP) 

631.744 13.50 0.3 

637.778 14.75 0.5 

650.328 17.60 0.5 

699.878 38.10 0.5 

727.058 46.50 1.0 

756.488 57.16 1.0 

773.818 64.75 1.0 
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