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1 Bayesian evidence synthesis

Bayesian inference is based on the factorisation of the posterior joint probability

function, according to Bayes’ theorem, into a prior distribution for the parameters θ

and the likelihood of the data Y given the parameters. The aim of evidence synthesis is

to estimate k “basic” parameters θ = {θ1, . . . , θk} from n datasets Y = {Y1, . . . , Yn}.

The distribution of each dataset Yi is determined by parameters that may be expressed

as functions of the basic parameters: Yi ∼ f(Yi | Gi(θ)) = f(Yi | θ). The function Gi is

the identity function for a single component θj of θ, Gi(θ) = θj if the ith dataset

directly informs θj. If the dataset indirectly informs multiple parameters, Gi is a more

complex function of θ.

If each data source is assumed independent, a likelihood function combining all data

items may be constructed as the product of contributions from each data source,

L(Y | θ) =
∏n

i=1 L(Yi | θ).

Additionally, other pre-existing knowledge may be added in the form of the prior

distribution on θ, determined by additional hyper-parameters λ: f(θ | λ). Using the

Bayesian approach, the joint posterior distribution of θ conditional on the available

data and hyper-parameters is:

f(θ | Y ,λ) =
f(Y | θ)× f(θ | λ)

f(Y | λ)
∝ f(Y | θ)× f(θ | λ) = L(Y | θ)× f(θ | λ)

The normalising factor 1
f(Y |λ)

does not depend on the parameters θ for which we want

to find the posterior distribution. However, it may not be straight forward to evaluate.

For this reason, the joint posterior distribution for the basic parameters, as well as their

marginal distributions, are estimated using a Monte Carlo Markov Chain algorithm in
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the OpenBUGS software [2]. In this method, the joint posterior distribution is the

steady state distribution of a Markov Chain, defined by an iterative sampling

procedure, which uses information on the relative probability of certain states derived

from L(Y | θ)× f(θ | λ).

2 Construction of the likelihood and the joint

posterior distribution function - initial model

In our model, the basic parameters of interest in θ are: ν, the proportion of MSM

among males; πage,reg, HIV prevalence by age and region; and δage,reg, the proportion

diagnosed among HIV positives by age and region.

Contributions from data informing proportions The data available that inform

proportions are: the number of MSM, ypop, among men, npop; the number of previously

undiagnosed HIV-positive MSM, yvctage,reg, by age and region, among MSM undertaking

VCT, nvctage,reg; and the number of diagnosed HIV-positive MSM, yemiage,reg, among MSM in

the EMIS survey, nemiage,reg, by age. Each numerator y is assumed to be a realisation of a

Binomial distribution, specified in terms of the functions Gi = Gi(ν, πage,reg, δage,reg) as

follows:

ypop ∼ Binomial(npop, Gpop), Gpop = ν

yvctage,reg ∼ Binomial(nvctage,reg, G
vct
age,reg), Gvct

age,reg = uage,reg = πage,reg(1− δage,reg)

yemiage,reg ∼ Binomial(nemiage,reg, G
emi
age,reg), Gemi

age,reg = dpage,reg = πage,regδage,reg

The likelihood contribution of each data item coming from a binomial distribution is

defined as:

L(Yi | ν, π, δ) =

(
Ni

Yi

)
·GYi

i · (1−Gi)
Ni−Yi

Contributions from count data Next, we have data on the number of reported

cases, which we assume to be Poisson distributed with the mean µage,reg:
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yrepage,reg ∼ Poisson(Grep
age,reg), Grep

age,reg = µrepage,reg

yunkage,reg ∼ Poisson(Gunk
age,reg), Gunk

age,reg = µunkage,reg.

The likelihood contributions for each data point representing a realisation from Poisson

distribution are:

L(Yi | ν, π, δ) =
e−Gi ·GYi

i

Yi!

We assume that the true number of diagnosed cases lies between the number of newly

diagnosed HIV cases reported as MSM and the total of male HIV cases reported as

MSM and those reported with missing transmission category:

µrepage,reg ≤ dage,reg ≤ µrepage,reg + µunkage,reg,

We consider parameters µ as additional basic parameters and assign them flat prior

distributions:

µrepage,reg ∼ Gamma(0.01, 0.01)

µunkage,reg ∼ Gamma(0.01, 0.01)

In order to ensure that the above inequalities hold, we also introduce additional

parameters αage,reg and artificial data points aage,reg, which are realisations from

Bernoulli distributions with success probability αage,reg:

aage,reg ∼ Bernoulli(αage,reg)

The parameters αage,reg are defined as functions of other parameters as follows:

αage,reg =

{
1 if µrepage,reg ≤ dage,reg ≤ µrepage,reg + µunkage,reg

0 otherwise

We consider that the above inequalities hold and this belief is included in the model as

data points informing the Bernoulli distribution, i.e.:

aage,reg = 1.

3



The likelihood function The complete formulation of the likelihood function

becomes:

L(Y | ν, π, δ, µ) =
n∏
i=1

L(Yi | ν, π, δ, µ)

=

(
npop

ypop

)
· νypop · (1− ν)(npop−ypop) ·

∏
age

{∏
reg

{(
nemiage,reg

yemiage,reg

)
· (dpage,reg)y

emi
age,reg · (1− dpage,reg)(nemi

age,reg−yemi
age,reg) ·(

nvctage,reg
yvctage,reg

)
· (uage,reg)y

vct
age,reg · (1− uage,reg)(nvct

age,reg−yvctage,reg) ·

e−µ
rep
age,reg · (µrepage,reg)(yrepage,reg)

(yrepage,reg)!
·
e−µ

unk
age,reg · (µunkage,reg)

(yunk
age,reg)

(yunkage,reg)!
·

(αage,reg)
aage,reg · (1− αage,reg)(1−aage,reg)

}}
.

Prior distribution The parameters determining binomial distributions were given

vague priors (uniform distributions Uniform[λ1, λ2], where λ1 = 0 and λ2 = 1), and the

parameters µ were assumed to have vague Gamma(λ3, λ4) distributions, where

λ3 = λ4 = 0.01:

f(ν, π, δ | λ) =

{
A if ν, πage,reg, δage,reg ∈ [0, 1] and µrepage,reg, µ

unk
age,reg > 0

0 otherwise

where A = ( (0.01)(0.01)

Γ(0.01)
)4 ·
∏

age,reg(µ
rep
age,reg · µunkage,reg)

(0.99) · e−0.01·(µrepage,reg+µunk
age,reg) denotes the

gamma distributed priors.

3 Model criticism using deviance summaries

Deviance summaries were used to evaluate the fit of particular models and to

discriminate between the models. For the parameter vector θ and data y, the deviance

function D(θ, y) is defined as follows:

D(θ, y) = −2log(p(y | θ)) + 2log(h(y))

where the function h(y) does not depend on θ, and is of the form p(y | θ̂). We will

assume that θ̂ is the maximum likelihood estimator (MLE) of θ calculated under the
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assumption of a saturated model (i.e. independently for each data item). In our model,

for the data coming from binomial distributions, θ̂ is the observed proportion and for

the data from the Poisson distributions, the MLE is the observed count.

Given the posterior distribution of θ, p(θ|y), the posterior expected deviance D(y) is

defined as:

D(y) = Eθ|yD(θ, y) =

∫
D(θ, y)p(θ|y)dθ.

The posterior expected deviance can be evaluated through the MCMC procedure. Once

the chain has converged we expect the values of the parameters θ generated at each step

to come from the posterior distribution of θ. D(θ, y) is then calculated at each

interation for the generated values of θ and the D(y) can be approximated by the mean

value of the values calculated at each iteration.

Under the independence assumption for each data item, we may examine Di(y), the

contribution of Yi to the overall posterior mean deviance. If the proposed model fits

well the data item Yi, then Di(y) ≈ 1 [1, 3]. If the assumed model is true, then

D(y) =
∑

iDi(y) is approximately equal to the number of parameters in the saturated

model.

The model complexity is defined by the effective number of parameters

pD = D(y)−D(θ, y), where θ is the posterior mean of θ. Finally, to discriminate

between different models, we used the Deviance Information Criterion (DIC) defined as:

DIC = D(θ, y) + 2pD = D(y) + pD.

The model with the smallest DIC is generally the preferred one, optimising the fit with

the least complexity.

4 Trends in (undiagnosed) prevalence - VCT data

Following Section 2.3 of the main text, we assume that the undiagnosed prevalence

evolved during 2010 depending on the rate of new infections ri and the rate of diagnoses

rd as follows:

u(t) = u(t0) + (ri − rd)(t− t0) (1)
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where t ∈ [t0, t1], t0 denotes 01.01.2010, t1 is 31.12.2010 and both ri and rd were

constant during this time. We also assume that the overall population of MSM is stable

over the course of the year, i.e. that entries and exits to the population (due to aging,

migration, death and behaviour change) cancel.

Further, we assume that the prevalence among MSM testing at the VCT network at a

given time point approximates the undiagnosed prevalence. As the date of test (month)

is available for 99.8% of the testers, we are in a position to study the dependence of

prevalence on the month of test in the VCT data. The general trend is displayed in

Figure 1. We note a small downward tendency. However, when running a binomial

regression model adjusting for age and region, this trend is not statistically significant

(Table 1). In this model, we used the identity link to better test the assumption of a

linear effect of time on undiagnosed prevalence. The logit link is more common when

modelling a proportion, but in our case, since we consider a short time period (1 year)

and given the order of magnitude of the outcome (proportion positive), the model is

unlikely to predict values of the proportion outside the [0, 1] range.
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Figure 1: Trend in undiagnosed prevalence, u(t), observed in VCT testers during 2010
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5 EMIS and VCT study populations

The characteristics of the subpopulations of MSM recruited in EMIS survey and the

ones volunteering for testing in VCT are provided in Table 2.
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Table 1: Binomial regression model of HIV positive result on time of test, region and age

group in VCT data

Risk difference Std.Err. z p>z [95% Conf. Int.]

Time of the test (linear ef-

fect, per 1 additional year)

-0.0099 0.01287 -0.77 0.441 -0.035 0.015

Region (Oth vs Maz) 0.0101 0.0074 1.37 0.171 -0.004 0.025
Age (> 35 vs ≤ 35) 0.0715 0.0166 4.31 0.000 0.039 0.104
Constant 0.0380 0.0091 4.19 0.000 0.0202 0.0558
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Table 2: Comparison of the characteristics of the EMIS respondents and VCT clients

EMIS VCT

N % N %

Age (years) 15 – 24 896 30.17 1034 37.85
25 – 39 1663 55.99 1514 55.42
40+ 311 10.47 184 6.73

Education Elementary 82 2.86 162 5.66
Vocational 99 3.45 167 5.83
High school 1182 41.18 1152 40.24
Higher 1484 51.71 1233 43.07
N.D. 23 0.80 149 5.20

Region Dolnoslaskie 247 8.61 204 7.13
Kujawsko-pomorskie 105 3.66 85 2.97
Lubelskie 44 1.53 50 1.75
Lubuskie 35 1.22 48 1.68
Lodzkie 123 4.29 67 2.34
Malopolskie 285 9.93 90 3.14
Mazowieckie 972 33.87 1295 45.23
Opolskie 29 1.01 34 1.19
Podkarpackie 25 0.87 21 0.73
Podlaskie 23 0.80 56 1.96
Pomorskie 154 5.37 196 6.85
Slaskie 206 7.18 197 6.88
Swietokrzyskie 21 0.73 36 1.26
Warminsko-mazurskie 32 1.11 54 1.89
Wielkopolskie 225 7.84 232 8.10
Zachodniopomorskie 90 3.14 144 5.03
N.D. 254 8.85 54 1.89

Prior HIV test Never tested 1057 36.83 -
Tested, positive 147 5.12 -
Tested, last test negative 1649 57.46 -
N.D. 17 0.59 -

Time of last HIV test Never tested 1057 39.06 1245 43.49
(among not previously past 12M 960 35.48 849 29.65
diagnosed) >12M 394 14.56 633 22.11

N.D. 295 10.90 136 4.75

Location of last HIV test VCT 802 44.65 980 61.60
other 993 55.29 271 17.03
N.D. 1 0.06 340 21.37

Number of casual sex None 783 27.28 469 16.38
partners past 12 M 1-5 1152 40.14 1383 48.31

> 5 813 28.33 470 16.42
N.D. 122 4.25 541 18.90
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