SUPPLEMENTARY MATERIAL
S1. Model structure and parameters
The model possesses 101 age cohorts (0, 1, 2, …, 100+). Children enter the population at 6 months of age. The flow diagram and equations of the mathematical model of transmission dynamics of varicella and zoster were depicted in Fig. S1. A more detailed description of the model can be found elsewhere [1,2]. The model parameters and Australian population characteristics are listed in Table S1. Parameters used for sensitivity analysis are summarised in Table S2.


[image: image1]Fig. S1.  Flow chart of the transmission dynamics of varicella and zoster with and without vaccination. The mutually exclusive compartments represent the different VZV epidemiological states. Arrows represent the flow between these states. Model variables: S(a, t) = Susceptible, E(a, t) = Latent, I(a, t)  = Infectious, R(a, t) = Temporary immune to zoster, ZS(a, t) = Susceptible boosting, ZI(a, t) = Zoster, ZR(a, t) = Zoster immune, VTP1(a, t) = V One-dose protected, VTP2(a, t) = V Two-dose protected,  VS1(a, t) = V1 Susceptible after one-dose vaccination, VS2(a, t) = V2 Susceptible after  two-dose vaccination, VE(a, t) = V Latent, VI(a, t) = V Infectious, VR(a, t) = V Immune,  ZVS(a, t) = V Susceptible boosting, ZVI(a, t) = V Zoster, ZVR(a, t) = V Zoster immune. Model parameters: F = Percent where vaccine fails completely, T = Percent temporarily protected after vaccination, λ = Force of infection, ( = Death rate, w =Waning rate from vaccine protected to vaccine susceptible, k = Proportion of temporarily protected  individuals who become immune due to contact with varicella, b = Relative susceptibility of vaccinees compared to non-vaccinees, 1/σ = Duration of natural varicella latent period, 1/α = Duration of natural varicella infectious period, 1/σv = Duration of breakthrough varicella latent  period, 1/αv = Duration of breakthrough varicella infectious period, 1/δ = Duration of immunity to zoster after exposure  to varicella, z = Percent of effective varicella contacts that boost against zoster, ρ = Rate of reactivation.

Table S1
Model parameters
	Parameters
	Symbol
	Values
	References

	Varicella parameter
	
	
	

	Duration of natural varicella latent period (days) 
	1/(
	14
	
 ADDIN EN.CITE 

[1, 3]


	Duration of natural varicella infectious period (days) 
	1/(
	7
	
 ADDIN EN.CITE 

[1, 3]


	Duration of breakthrough varicella latent period (days)
	1/(v
	14
	
 ADDIN EN.CITE 

[1, 2]


	Duration of breakthrough varicella infectious period (days) 
	1/(v
	4.5
	
 ADDIN EN.CITE 

[1, 2]


	Pre-vaccination force of varicella infection by age group (per year) 
	(v(a,t)
	
	
 ADDIN EN.CITE 

[4, 5]


	  0-4 
	
	0.140
	

	  5-9 
	
	0.182
	

	  10-14 
	
	0.086
	

	  15-19 
	
	0.053
	

	  20-24 
	
	0.047
	

	  25-29 
	
	0.057
	

	  30-34 
	
	0.077
	

	  35-39 
	
	0.086
	

	  40-44 
	
	0.051
	

	  45-49 
	
	0.030
	

	  50-54 
	
	0.034
	

	  55-59 
	
	0.025
	

	  60-64
	
	0.030
	

	  65-69 
	
	0.032
	

	  70+ 
	
	0.011
	

	Force of varicella due to zoster 
(per year) ((z)
	
	5.4×10-7×zoster prevalence
	

	Zoster parameters
	
	
	

	Average duration of immunity to zoster after varicella infection (years)
	1/δ
	24.4
	
 ADDIN EN.CITE 

[1, 2]


	Percent of effective varicella contacts that boost against zoster
	z(a)
	
	
 ADDIN EN.CITE 

[1, 2]


	  0-50 
	
	75%
	

	  60 
	
	71%
	

	  70 
	
	57%
	

	  80+ 
	
	32%
	

	Rate of reactivation by age 
(per year) 
	ρ(a)
	
	
 ADDIN EN.CITE 

[1, 2]


	  10 
	
	0.017
	

	  25 
	
	0.005
	

	  50 
	
	0.010
	

	  60 
	
	0.014
	

	  70 
	
	0.018
	

	  80 
	
	0.024
	

	Vaccine efficacy parameters
	
	1-dose
	2-dose
	

	Waning rate from vaccine protected to vaccine susceptible 
(1/ year) 
	w
	0.027
	0.010
	
 ADDIN EN.CITE 

[6, 7]


	Percent temporarily protected after vaccination 
	T
	0.840
	0.970
	
 ADDIN EN.CITE 

[6, 7]


	Percent where vaccine fails completely 
	F
	0.040
	0.020
	
 ADDIN EN.CITE 

[6, 7]


	Relative susceptibility of vaccinees compared to non-vaccinees 
	b
	0.900
	0.340
	
 ADDIN EN.CITE 

[6, 7]


	Proportion of temporarily protected  individuals who become immune due to contact with varicella 
	k
	0.182
	0.000
	
 ADDIN EN.CITE 

[6, 7]


	Rate of varicella infectiousness of vaccinees compared to non-vaccinees 
	m
	0.500
	0.500
	
 ADDIN EN.CITE 

[1, 2]


	Australian population characteristics
	
	Estimate
	

	Australian population (2010 ABS* estimate)
	N
	22,342,400
	ABS* website

	Birth rate (birth/year) (2010 ABS* estimate)
	B
	297,900
	ABS* website


*ABS = Australian Bureau of Statistics, http://www.abs.gov.au/AUSSTATS/abs@.nsf/mf/3301.0
Table S2
Parameters for sensitivity analysis
	Parameter
	Symbol
	Base value
	Min
	Max
	Reference

	Infant vaccine coverage (18 months)
	C1
	0.830
	0.700
	0.950
	ACIR, [8,9]

	Catch-up vaccination coverage (12years)
	CR
	0.350
	0.300
	0.400
	ATAGI 2007-9, [10]

	Specificity of parental report for varicella infection
	ψ
	0.5/0.78*
	0.3/0.63*
	0.7/0.9*
	[11-13]

	Sensitivity of parental report for varicella infection
	φ
	0.65/0.73*
	0.5/0.58*
	0.9/0.95*
	[11-13]

	1-dose vaccine efficacy (VE) parameters
	
	
	
	
	

	Immunity waning rate
	w1
	0.027
	0.021
	0.085
	
 ADDIN EN.CITE 

[6, 7]


	Relative infectiousness of vaccinees
	m1
	0.500
	0.200
	1.000
	
 ADDIN EN.CITE 

[6, 7]


	Vaccine efficacy
	T1
	0.840
	0.830
	0.950
	
 ADDIN EN.CITE 

[6, 7]


	Relative susceptibility of vaccinees
	b1
	0.900
	0.500
	1.000
	
 ADDIN EN.CITE 

[6, 7]


	Rate of vaccine protected individuals getting immune
	k1
	0.182
	0.000
	1.000
	
 ADDIN EN.CITE 

[6, 7]


	Percent where vaccine fails completely 
	F1
	0.040
	0.010
	0.060
	[1,2,14]

	2-dose VE parameters
	
	
	
	
	

	Immunity waning rate
	w2
	0.010
	0.000
	0.085
	
 ADDIN EN.CITE 

[2, 7]


	Vaccine efficacy
	T2
	0.970
	0.830
	1.000
	
 ADDIN EN.CITE 

[2, 7]


	Relative susceptibility of vaccinees
	b2
	0.340
	0.085
	1.000
	
 ADDIN EN.CITE 

[2, 7]


	Rate of vaccine protected individuals getting immune
	k2
	0.000
	0.000
	1.000
	
 ADDIN EN.CITE 

[2, 7]


	Percent where vaccine fails completely 
	F2
	0.020
	0.000
	0.040
	[1,2,7,14]


*before 2015/after 2020, the value is linearly increasing between 2015 and 2020.

S2. Vaccine efficacy over time

In Fig. S2, we show the assumed proportion immune to breakthrough infection after 1 or 2 doses by time since last dose. At 10 years post vaccination, ~65% of 1-dose and 88% of 2-dose recipients are assumed protected against breakthrough infection in base-case.
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Fig. S2.  Proportion of vaccinees immune by time since last infection for one-dose (circle-solid line for base-case, dashed  lines for best/worst case) and two-dose recipients (star-solid line for base-case, solid lines for best/worst case).

S3. Vaccine coverage of susceptibles via catch-up
To determine the proportion (Cs(a,t)) of susceptible individuals who received catch-up vaccination, we assumed that parental recall of infection and immunisation could be summarised through literature-derived sensitivity (φ) and specificity (ψ) estimates, with coverage of susceptibles determined by the following formula: 
Cs(a,t) = C(a,t) / [(1- φ)Pi(a,t) + ψPs(a,t)],
where Pi(a,t) = the proportion immune (natural or vaccinated) of age a at time t; Ps(a,t) = the proportion susceptible of age a at time t and C(a,t) is the coverage of that age-cohort. For recall of infection, we assumed that φ = 0.65 and ψ =0.5, while for recall of vaccination status we assumed  φ = 0.73 and ψ =0.78 based on US surveys [13]. From 2015 on there will be a high level of vaccine coverage within the cohort being offered catch-up vaccination. Recall of vaccination is much higher than recall of infection [11-13]. We assume a constant cohort coverage of 35% (based on school-program data from 2007-9 in Australia [10]) but assume this will decrease once vaccination occurs, falling to 19% after 2020 under base-case coverage assumptions and 15% under projected coverage assumptions. Coverage curves for these two situations are shown in Fig. S3. We also show the projected proportion of the catch-up vaccination that is provided to individuals who have already experienced natural infection or been vaccinated (wastage) in Fig. S4.
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Fig. S3. Base-case coverage (a) and projected coverage (b) of varicella vaccination in Australia from 2005 to 2050.
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Fig. S4. Proportion of school-based catch-up doses provided to individuals with existing natural or vaccine-induced protection (wastage) under base-case and projected coverage for strategy 2
S4. Model upgrades
Our VZV model used social contact and mixing patterns from the European Commission project, POLYMOD 
 ADDIN EN.CITE 

[4]
. We used the UK portion of the survey to determine contact rates by age-group with both physical and general contacts included as separate terms. This leads to the following representation for the infectious contact matrix:

M = q1M1+q2M2,
with the matrices M1 and M2 representing contributions from physical and general contacts respectively and the co-efficients q1 and q2 the respective probabilities of infection per contact. These probabilities were estimated by fitting to age-specific pre-vaccination seroprevalence data from Australia based on the national serosurvey in 1997-99 
 ADDIN EN.CITE 

[5]
. The two matrices are highly correlated and the estimation procedure placed almost all of the weight on physical contacts, with q1=0.0945 as opposed to q2 = 0.0001. 
Prior to fitting and incorporation into the deterministic model we calculated the symmetrised and weighted contact rates cij in time units of years, with these elements given by

cij = 365 (mij / wj + mji / wi) / 2,

where wi = Australian population size in age class i, obtained from Australian population data (ABS 2010) and mij are the matrix elements of M defined above. 
S5. Estimates of hospitalisation rates of varicella and zoster in Australia
We used pre-vaccination data (1997/98 and 1998/99) to estimate the proportion of cases who were hospitalised (Fig. S5) and the LOS (length of stay in hospital) days (Fig. S6) for both varicella and zoster. The raw estimates are given by the black dots in these figures, while the solid curves represent the parametric fits used to represent these data in the model.
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Fig. S5.  Estimated age-specific varicella (a) and zoster (b) hospitalisation rates (%). Varicella hospitalisation rate (%) = (the number of varicella hospitalised cases / the number of modelled varicella infections) × 100. Zoster hospitalisation rate (%) = (the number of zoster hospitalised cases / the number of modelled zoster cases) × 100.
	[image: image8.png]Varicella LOS (days)

1"

10

Data
Model fit

0
0-45-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-84 85+

Age (years)




	[image: image9.png]Zoster LOS (days)

0
0-45-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-84 85+

Age (years)






Fig. S6. Estimated age-specific varicella (a) and zoster (b) length of stay (LOS) (days) in hospital.
S6. Best-worse case analysis

In order to investigate multivariate uncertainty in one dose vaccine efficacy(VE), we chose worst and best case scenarios by setting each of the 5 key VE parameters to the most pessimistic or optimistic values simultaneously. For the worst case scenario, we set the waning rate (w1) = 8.5% per year, the proportion initially protected (T​1) = 83%, the relative susceptibility of vaccines (b1) = 100%, the proportion of vaccine-protected individuals that could be boosted to full immunity (k1) = 0% and the proportion experiencing primary failure (F1)= 6%. The corresponding figures in the best-case scenario were w1 = 2.1% per year, T​1 = 95%, b1 = 50%, k1 = 100% and F1 = 1%. The outcomes from these parameter scenarios are summarised in terms of differences in in-patient days between scenarios, with the worst-case results shown in Fig. S7 and the best-case results in Fig. S8.
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 Fig. S7. (a-b) Mean annual difference in varicella morbidity (in-patient days) and (c-d) zoster morbidity between strategy 1 (S1) and alternative strategies (S2, S3 and S4) in the periods: 2015-24, 2025-34 and 2035-50 under base-case coverage (infant dose coverage 83%) and projected coverage (infant dose coverage 95%) scenarios under worst-case 1-dose VE assumptions.
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 Fig. S8. (a-b) Mean annual difference in varicella morbidity (in-patient days) and (c-d) zoster morbidity between strategy 1 (S1) and alternative strategies (S2, S3 and S4) in the periods: 2015-24, 2025-34 and 2035-50 under base-case coverage (infant dose coverage 83%) and projected coverage (infant dose coverage 95%)scenarios under best-case 1-dose VE assumptions.

S7. Original zoster assumptions
In our previous paper 
 ADDIN EN.CITE 

[2]
, we used different assumptions for the rate of zoster reactivation and boosting by age and in Fig. S9 we compare the incidence of zoster using the old and new sets of assumptions under strategy 1. The effect of these assumptions on relative differences in zoster between strategies is even smaller, with the differences summarised in Fig. 4 in the main text changing by less than 1 day of hospitalisation per million population in any of the time periods and under both coverage situations presented.
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Fig. S9. Comparison between zoster incidence under current and previous  assumptions 
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[2]
 regarding zoster reactivation and boosting under strategy 1.
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Model equations: 


    dS(a,t)/dt  = B([(+(C1+ηC2)(T1+p1)+ξC2 (T2+ p2)+(]S(a,t),


     dE(a,t)/dt = (S(a,t)((( +()E(a,t),


      dI(a,t)/dt = (E(a,t)(((+()I(a,t),


     dR(a,t)/dt = (I(a,t)+z(ZS(a,t)((δ+()R(a,t),


dVTP1(a,t)/dt = (C1T1+ηC2T1)S(a,t)-(C2T2+w1+k1(+()VTP1(a,t),


dVTP2(a,t)/dt = C2T2 ξ S(a,t) +C2T2(VTP1(a,t) +VS1(a,t))( (w2+ 


                        k2( +()VTP2(a,t),


 dVS1(a,t)/dt = p1 (C1+C2η)S(a,t) + w1VTP1(a,t)- (C2T2+b1( 


                       +()VS1(a,t),


 dVS2(a,t)/dt = C2p2 ξS(a,t) + w2VTP2(a,t) - (b2(+()VS2(a,t),


   dVE(a,t)/dt = b1(VS1(a,t) +b2(VS2(a,t) (((v +()VE(a,t),


    dVI(a,t)/dt = (vVE(a,t)(((v+()VI(a,t),


    dVR(a,t)/dt = k1(VTP1(a,t)+ k2(VTP2(a,t)+ (vVI(a,t)+ 


                         zv(ZVS(a,t) ((δv+()VR(a,t),


    dZS(a,t)/dt = δR(a,t)((ρ+z(+()ZS(a,t),


     dZI(a,t)/dt = ρZS(a,t)((αz+()ZI(a,t),


    dZR(a,t)/dt = αzZI(a,t)-(ZR(a,t),


   dZVS(a,t)/dt = δvVR(a,t)((ρv+zv(+()ZVS(a,t),


    dZVI(a,t)/dt = ρvZVS(a,t)((αz+()ZVI(a,t),


   dZVR(a,t)/dt = αzZVI(a,t)-(ZVR(a,t),


  where ((a,t) = (v(a,t)+(z(t); αz= (; η = (1-C1); 


  ξ= C1F1; p1=1-T1-F1; p2=1-T2-F2.
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