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1 Methods 

1.1 Participants and assessments 

HCs were recruited through advertisement among middle school, high school and university 

students. For case-control age-matching, an implementation of the Munkres algorithm (Munkres 

1957) was used. The matching procedure resulted in a maximum difference of 0.6 years between the 

individuals within one recAN-HC pair (mean age difference of 0.2 years). 

Exclusion criteria and possible confounding variables, e.g. the use of psychotropic 

medications and medical comorbidities, were obtained using the SIAB-EX and our own semi-

structured interview. Comorbid psychiatric diagnoses other than eating disorders were derived from 

medical records and confirmed by an expert clinician with over 10 years of experience after careful 

chart review (including consideration of medical and psychiatric history and a range of psychiatric 

screening instruments). 

HC participants were excluded if they had any history of psychiatric illness, a lifetime BMI 

below the 10th age percentile if younger than 18 years or a BMI below 18.5kg/m2 if older than 18 

years, or were currently obese (BMI over 92th age percentile if younger than 18 years; BMI over 

29kg/m² if older than 18 years).  

Participants of both study groups were excluded if they had a lifetime history of any of the 

following clinical diagnoses: organic brain syndrome, schizophrenia, substance dependence, 

psychosis NOS, bipolar disorder, bulimia nervosa or binge-eating disorder (or “regular” binge eating - 

defined as bingeing at least once a week for 3 or more consecutive months). Further exclusion 

criteria for all participants were IQ lower than 85; psychotropic medication (other than SSRI) within 4 

weeks prior to the study; current substance abuse; current inflammatory, neurologic or metabolic 

illness; chronic medical or neurological illness that could affect appetite, eating behavior, or body 

weight (e.g., diabetes); clinically relevant anemia; pregnancy; and breast feeding. 
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In recAN, comorbid diagnoses were taken according to standard practice from medical 

records and confirmed by an expert clinician with over 10 years of experience after careful chart 

review (including consideration of medical and psychiatric history and a range of psychiatric 

screening instruments e.g. SIAB-EX, EDI-2, BDI-2, SCL-90-R, see Table S1). 23% of the recAN 

participants had a history of one or more formal comorbid psychiatric diagnoses (22% depressive 

disorders including dysthymia, 1% obsessive-compulsive disorder, and 4% anxiety disorder). 

All recAN subjects had a BMI in the past below the cut-offs defining AN according to 

Kromeyer-Hauschild et al. (2001) and Hebebrand et al. (2004). 

Handedness was assessed using a short version of the Annett Scale of Hand Preference 

(Annett 1970) as previously implemented in Gollub et al. (2013). This questionnaire asks for 

handedness in typical daily life situations as writing or brushing teeth. Response categories range 

from 0 ‘right hand’, 1 ‘both hands’ to 2 ‘left hand’. A mean score for handedness was calculated. For 

a list of other employed assessment instruments see Table S1. 

Study data were collected and managed using secure, web-based electronic data capture 

tools REDCap (Research Electronic Data Capture (Harris et al. 2009)).  

1.2 Laboratory measures 

To measure leptin levels, venous blood was collected into vacutainer tubes between 7 and 9 

a.m. after overnight fasting. Plasma samples were centrifuged (2500g for 15 min), aliquoted, and 

stored at -80°C until analysis. Hormone concentration in all participants was measured in one session 

at the same lab using a commercially available sandwich Enzyme Linked-Immunosorbent Assay 

(ELISA; BioVendor) following manufacturer instructions. 
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Inventory Abbreviation Description Reference 

Structured Interview for Anorexia and Bulimia Nervosa for 
DSM-IV 

SIAB-EX 
expert 
interview 

(Fichter & Quadflieg 
2001) 

Beck Depression Inventory 2 BDI-2 self-report (Hautzinger et al. 2009) 

Eating Disorder Inventory 2 EDI-2 self-report (Paul & Thiel 2005) 

Revised symptom checklist 90 SCL-90-R self-report (Schmitz et al. 2000) 

Wechsler Adult Intelligence Scale (short version) WAIS 
standardized 
assessment 

(von Aster et al. 2006) 

Wechsler Intelligence Scale for Children (short version) WISC 
standardized 
assessment 

(Petermann & 
Petermann 2006) 

Table S1. Assessment instruments. Intelligence quotient (IQ) was assessed with WAIS for 
participants aged ≥16 years or WISC otherwise. 
 

1.3 MRI data acquisition 

The T1-weighted structural brain scans were acquired with rapid acquisition gradient echo 

(MP-RAGE) sequence: number of slices=176; TR=1900ms; TE=2.26ms; flip angle=9°; slice 

thickness=1mm; voxel size=1x1x1mm³; FoV=256x224mm²; bandwidth=200 Hz/pixel.  

1.4 MRI data processing & computation of graph metrics 

Beyond SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), the following software tools were used: 

DARTEL (Ashburner 2007) for generating anatomical group templates, Nipype framework 

(Gorgolewski et al. 2011) for running image processing workflows, DPARSFA toolbox (Yan & Zang 

2010) for extraction of time series, open-source python library networkx (Hagberg et al. 2008) for 

graph analysis, and R toolbox (R Core Team 2012) for statistical analysis.  

We evaluated the quality of the fMRI data by visual inspection. During preprocessing 

smoothing was not performed, because it would impose new correlations amongst seed regions, 

emphasizing those that are adjacent and hence bias the network structure towards a lattice topology 

http://www.fil.ion.ucl.ac.uk/spm/
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and alter graph metrics (Fornito et al. 2010). Similarly, during preprocessing we did not apply global 

mean regression, which would bias correlations and complicates the interpretation of negative 

correlations (Saad et al. 2012). There was no difference in global signal between groups (t(100)=-

0.89, p=0.38). 

A component based method (CompCor) was applied to the data in order to reduce signals 

that are unlikely to be modulated by neural activity (Behzadi et al. 2007). 

To reduce the bias of residual motion through causing spurious correlation structures 

throughout the brain, which would be reflected in the derived graph metrics, the datasets were 

scrubbed after regression of nuisance covariates to eliminate timepoints with a framewise 

displacement >0.5mm (Power et al. 2012). According to standard procedure of scrubbing, one 

preceding and two subsequent timepoints were also excluded (Power et al. 2012). A two-sample t-

test was used to test for potential differences of frame-wise displacement and subsequently for 

differences in length of time series after scrubbing. Groups did not differ in the number of scrubbed 

frames (MeanHC=17.2, SDHC=19.7; MeanrecAN=14.8, SDrecAN=18.1; t(107.3)=-0.66, p=0.51) and none of 

the participants had less than 118 (equivalent to >60%) frames after scrubbing. Therefore, no 

participant had to be excluded. 

Preprocessed volumes were parcellated into 160 spherical regions of interest (ROIs) as 

defined by Dosenbach (2010). This functionally defined parcellation scheme has been derived from 

meta-analyses of task-related fMRI studies, covers cerebrum and cerebellum and consists of non-

overlapping spheres with a diameter of 10mm. See Table S2 for a comprehensive list of all ROIs and 

the coordinates. The symmetric matrix of Pearson correlations provided the basis for graph 

generation. 

The graphs were rendered sparse by recursively removing edges, beginning with the weakest 

weights and progressing until a certain percentage of edges remained. In order to investigate the 

influence of different sparsity threshold levels on network properties, 21 sparsity thresholds were 
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tested, starting from 10% in increasing steps of 1% to 30%. If removal of an edge would result in a 

disconnected graph, the respective edge was retained, even in case of low weight.  

1.5 Local graph metrics 

The degree of a node is the most basic local network measure and equals the number of the 

node's adjacent edges. A node with a high degree is densely connected and thus has a high 

importance in the network. The strength of a node is the sum of weights of edges from neighboring 

nodes connected to the node. A node with a high strength has a high temporal correlation with its 

neighboring nodes. The local clustering coefficient (CCloc) is the ratio of triangles around the node 

meaning the fraction between the number of existing edges within the neighborhood of the node 

and the number of possible edges within the neighborhood of the node. CCloc is used to measure 

segregation, which is the ability for specialized processing in small groups of nodes. A high CCloc 

describes a node that is deeply embedded in a local subnetwork. The local characteristic pathlength 

(CPLloc) is the number of edges in the shortest paths to any other node in the graph, normalized by 

the total number of nodes. As a measure of functional integration, a short CPLloc reflects a rapid 

communication with distant brain regions. Betweenness centrality index (BCI) is the fraction of all 

shortest paths in the network that contain a given node. Nodes with a high BCI participate in a large 

number of shortest paths and are termed hubs. Eloc is the local efficiency computed on node 

neighborhoods describing extent of information transfer of the respective node with all other nodes 

in the network. A high Eloc expresses fast local flow of information. Normalized local efficiency (LEGE) 

equals Eloc after normalization based on global efficiency. The participation index (PI) is a measure of 

the diversity of intermodular connections of a given node.  

1.6 Global graph metrics 

The clustering coefficient (CCglob) measures segregation and reflects the average diffusiveness 

of clustered connectivity around individual nodes. The characteristic pathlength (CPLglob) between 

each possible pair of nodes is the number of edges in the shortest path between them, divided by all 
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possible pairs of nodes in the network. It measures the extent of overall routing efficiency, where a 

high CPLglob represents less efficient information flow due to long routes. The ratio between 

clustering coefficient and characteristic pathlength after both metrics have been standardized by 

dividing their values by those of random networks preserving the degree distribution of the original 

graph is called small-world index (σ) and summarizes to what extent the network shows features of a 

small-world network. Small-world networks combine high local clustering with short paths, 

representing an effective system in which nodes are linked through relatively few edges. The global 

efficiency (Eglob) is the average inverse shortest pathlength and captures the extent of information 

propagation in the network. The assortativity (α) reflects the tendency of nodes wiring with nodes of 

similar degree. If nodes with similar (dissimilar) degree tend to wire together, the network is said to 

be assortative (disassortative). Networks with a positive assortativity are likely to have a 

comparatively resilient core of mutually interconnected high-degree nodes (Newman 2002; 

Hagmann et al. 2008). In contrast, networks with a negative assortativity are likely to have widely 

distributed and sparsely interconnected hubs. Biological networks show the property that nodes 

having high degrees are preferably connected with nodes having low degrees, i.e. disassortivity. On 

the contrary, social networks show the property that nodes having many connections tend to be 

connected with other highly connected nodes, i.e. assortativity. 

To control for putative differences in overall connection strength, CCglob and CPLglob were 

normalized to 100 reference random graphs. All random graphs were connected and preserve 

degree distribution of the real graph. 

1.7 Additional statistical analyses 

Demographic and symptom variables were compared using Student’s t-tests. Correlational 

analyses were performed using Pearson coefficients. In all statistical analyses we used age-adjusted 

BMI standard deviation scores (BMI-SDS) calculated using the LMS method from Cole (1990) and 

German population reference data from Kromeyer-Hauschild et al. (2001) for participants ≤18 years 

old and Hemmelmann et al. (2010) for participants ≥19 years old. BMI-SDS is a better measure than 



Supplementary Material 
Altered global brain network topology as a trait marker in patients with anorexia nervosa  Geisler et al. 

   8 
 

absolute BMI in pediatric populations since what is considered a normal BMI changes with age 

(Hebebrand et al. 1996; Kromeyer-Hauschild et al. 2001). 

1.8 Comparison with acute AN patients 

As an exploratory analysis, the global metric assortativity of recAN was compared to the data 

of 35 acute patients from our previous study (Geisler et al. 2016). For better comparability, we 

recalculated assortativity from existing symmetric correlation matrices using the graph calculation 

procedure of the current study. Between-group comparisons were performed using non-parametric 

independent two-group Mann-Whitney U-Tests. We did not account for age differences. 
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ROI identifier x y z  ROI identifier x y z  ROI identifier x y z 
vmPFC_R_1 6 64 3  midinsula_R_55 33 -12 16  latcerebellum_L_109 -24 -54 -21 

aPFC_R_2 29 57 18  midinsula_L_56 -36 -12 15  infcerebellum_L_110 -37 -54 -37 

aPFC_L_3 -29 57 10  thalamus_L_57 -12 -12 6  postcingulate_R_111 10 -55 17 

mPFC_4 0 51 32  thalamus_R_58 11 -12 6  precuneus_L_112 -6 -56 29 

aPFC_L_5 -25 51 27  midinsula_R_59 32 -12 2  latcerebellum_L_113 -34 -57 -24 

vmPFC_R_6 9 51 16  temporal_R_60 59 -13 8  IPS_L_114 -32 -58 46 

vmPFC_L_7 -6 50 -1  midinsula_L_61 -30 -14 1  postcingulate_L_115 -11 -58 17 

aPFC_R_8 27 49 26  parietal_L_62 -38 -15 59  IPS_R_116 32 -59 41 

ventaPFC_R_9 42 48 -3  inftemporal_R_63 52 -15 -13  angulargyrus_R_117 51 -59 34 

ventaPFC_L_10 -43 47 2  parietal_L_64 -47 -18 50  occipital_L_118 -34 -60 -5 

vmPFC_L_11 -11 45 17  parietal_R_65 46 -20 45  occipital_R_119 36 -60 -8 

vlPFC_R_12 39 42 16  parietal_L_66 -55 -22 38  medcerebellum_L_120 -6 -60 -15 

vmPFC_R_13 8 42 -5  precentralgyrus_L_67 -54 -22 22  infcerebellum_L_121 -25 -60 -34 

ACC_R_14 9 39 20  temporal_L_68 -54 -22 9  infcerebellum_R_122 32 -61 -31 

vlPFC_R_15 46 39 -15  parietal_R_69 41 -23 55  temporal_R_123 46 -62 5 

dlPFC_R_16 40 36 29  postinsula_R_70 42 -24 17  angulargyrus_L_124 -48 -63 35 

supfrontal_R_17 23 33 47  basalganglia_R_71 11 -24 2  TPJ_L_125 -52 -63 15 

vPFC_R_18 34 32 7  inftemporal_L_72 -59 -25 -15  occipital_L_126 -44 -63 -7 

ACC_L_19 -2 30 27  postcingulate_R_73 1 -26 31  medcerebellum_L_127 -16 -64 -21 

supfrontal_L_20 -16 29 54  parietal_R_74 18 -27 62  latcerebellum_R_128 21 -64 -22 

ACC_L_21 -1 28 40  parietal_L_75 -38 -27 60  occipital_R_129 19 -66 -1 

dlPFC_R_22 46 28 31  postinsula_L_76 -30 -28 9  medcerebellum_R_130 1 -66 -24 

vPFC_L_23 -52 28 17  parietal_L_77 -24 -30 64  infcerebellum_L_131 -34 -67 -29 

dlPFC_L_24 -44 27 33  temporal_R_78 51 -30 5  precuneus_R_132 11 -68 42 

vFC_R_25 51 23 8  postparietal_L_79 -41 -31 48  occipital_R_133 17 -68 20 

antinsula_R_26 38 21 -1  postcingulate_L_80 -4 -31 -4  IPS_L_134 -36 -69 40 

dACC_R_27 9 20 34  fusiform_R_81 54 -31 -18  occipital_R_135 39 -71 13 

antinsula_L_28 -36 18 2  temporal_L_82 -41 -37 16  occipital_L_136 -9 -72 41 

dFC_R_29 40 17 40  temporal_L_83 -53 -37 13  occipital_R_137 45 -72 29 

basalganglia_L_30 -6 17 34  fusiform_R_84 28 -37 -15  medcerebellum_L_138 -11 -72 -14 

mFC_31 0 15 45  precuneus_L_85 -3 -38 45  occipital_R_139 29 -73 29 

frontal_R_32 58 11 14  supparietal_R_86 34 -39 65  infcerebellum_R_140 33 -73 -30 

vFC_L_33 -46 10 14  precuneus_R_87 8 -40 50  occipital_L_141 -2 -75 32 

dFC_R_34 44 8 34  IPL_L_88 -41 -40 42  occipital_L_142 -29 -75 28 

dFC_R_35 60 8 34  parietal_R_89 58 -41 20  medcerebellum_R_143 5 -75 -11 

dFC_L_36 -42 7 36  postcingulate_L_90 -8 -41 3  medcerebellum_R_144 14 -75 -21 

vFC_L_37 -55 7 23  inftemporal_L_91 -61 -41 -2  occipital_L_145 -16 -76 33 

basalganglia_L_38 -20 6 7  occipital_L_92 -28 -42 -11  occipital_L_146 -42 -76 26 

basalganglia_R_39 14 6 7  postcingulate_L_93 -5 -43 25  occipital_R_147 9 -76 14 

vFC_L_40 -48 6 1  precuneus_R_94 9 -43 25  occipital_R_148 15 -77 32 

pre-SMA_R_41 10 5 51  temporal_R_95 43 -43 8  occipital_R_149 20 -78 -2 

vFC_R_42 43 1 12  IPL_R_96 54 -44 43  infcerebellum_L_150 -21 -79 -33 

SMA_43 0 -1 52  parietal_L_97 -55 -44 30  infcerebellum_L_151 -6 -79 -33 

midinsula_R_44 37 -2 -3  latcerebellum_L_98 -28 -44 -25  postoccipital_L_152 -5 -80 9 

frontal_R_45 53 -3 32  postparietal_L_99 -35 -46 48  postoccipital_R_153 29 -81 14 

precentralgyrus_R_46 58 -3 17  suptemporal_R_100 42 -46 21  postoccipital_R_154 33 -81 -2 

thalamus_L_47 -12 -3 13  IPL_L_101 -48 -47 49  infcerebellum_R_155 18 -81 -33 

midinsula_L_48 -42 -3 11  angulargyrus_L_102 -41 -47 29  postoccipital_L_156 -37 -83 -2 

precentralgyrus_L_49 -44 -6 49  temporal_L_103 -59 -47 11  postoccipital_L_157 -29 -88 8 

parietal_L_50 -26 -8 54  IPL_L_104 -53 -50 39  postoccipital_R_158 13 -91 2 

precentralgyrus_R_51 46 -8 24  precuneus_R_105 5 -50 33  postoccipital_R_159 27 -91 2 

precentralgyrus_L_52 -54 -9 23  occipital_L_106 -18 -50 1  postoccipital_L_160 -4 -94 12 

precentralgyrus_R_53 44 -11 38  IPL_R_107 44 -52 47      

parietal_L_54 -47 -12 36  postcingulate_L_108 -5 -52 17      

 
Table S2. List of ROIs used for brain parcellation. Anatomical labels and MNI center coordinates are 
given as defined by Dosenbach (2010). 
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Figure S1. Distribution of correlations. Histogram of all Pearson correlation coefficients (values from 
the correlation matrices used for graph network construction) across groups. Recovered AN (recAN) 
and healthy controls (HC) are depicted by cyan and red, respectively. 
 
 

2 Results 

 
Figure S2. Group comparison of a priori selected local metrics. Results of group comparison of the 
two metrics local characteristic pathlength (CPLloc) and strength of left midinsula, left postinsula, left 
and right thalamus for all tested sparsity thresholds between 10 and 30. Comparisons were done 
using Mann-Whitney U-Tests (** p<0.01; * p<0.5; · p<0.1). According to our a priori hypothesis, p-
values for CPLloc and strength were not corrected for multiple comparisons. HC and recAN are 
depicted by black circles and white triangles, respectively. 
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Figure S3. Group differences in local metrics - Degree. Uncorrected significance levels of group 
comparisons for all ROIs and all tested sparsity thresholds are shown (least sparse in the center). Test 
statistics surviving correction for multiple testing of the 160 ROIs are highlighted in white. Please 
note that the latter FDR procedure did not take into account the number of tested local metrics (as 
described in the main manuscript). None of these findings remained significant after correcting for 
multiple testing across regions and metrics. 
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Figure S4. Group differences in local metrics - Strength. Uncorrected significance levels of group 
comparisons for all ROIs and all tested sparsity thresholds are shown (least sparse in the center). Test 
statistics surviving correction for multiple testing of the 160 ROIs are highlighted in white. Please 
note that the latter FDR procedure did not take into account the number of tested local metrics (as 
described in the main manuscript). None of these findings remained significant after correcting for 
multiple testing across regions and metrics. 
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Figure S5. Group differences in local metrics - CPLloc. Uncorrected significance levels of group 
comparisons for all ROIs and all tested sparsity thresholds are shown (least sparse in the center). 
None of these findings remained significant after correcting for multiple testing across regions and 
metrics.  
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Figure S6. Group differences in local metrics - Eloc. Uncorrected significance levels of group 
comparisons for all ROIs and all tested sparsity thresholds are shown (least sparse in the center). Test 
statistics surviving correction for multiple testing of the 160 ROIs are highlighted in white. Please 
note that the latter FDR procedure did not take into account the number of tested local metrics (as 
described in the main manuscript). None of these findings remained significant after correcting for 
multiple testing across regions and metrics. 
  



Supplementary Material 
Altered global brain network topology as a trait marker in patients with anorexia nervosa  Geisler et al. 

   15 
 

 
 
Figure S7. Group differences in local metrics - LEGE. Uncorrected significance levels of group 
comparisons for all ROIs and all tested sparsity thresholds are shown (least sparse in the center). 
None of these findings remained significant after correcting for multiple testing across regions and 
metrics. 
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Figure S8. Group differences in local metrics - PI. Uncorrected significance levels of group 
comparisons for all ROIs and all tested sparsity thresholds are shown (least sparse in the center). 
None of these findings remained significant after correcting for multiple testing across regions and 
metrics. 
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Figure S9. Group differences in local metrics - BCI. Uncorrected significance levels of group 
comparisons for all ROIs and all tested sparsity thresholds are shown (least sparse in the center). Test 
statistics surviving correction for multiple testing of the 160 ROIs are highlighted in white. None of 
these findings remained significant after correcting for multiple testing across regions and metrics.  
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Figure S10. Group differences in local metrics - CCloc. Uncorrected significance levels of group 
comparisons for all ROIs and all tested sparsity thresholds are shown (least sparse in the center). Test 
statistics surviving correction for multiple testing of the 160 ROIs are highlighted in white. None of 
these findings remained significant after correcting for multiple testing across regions and metrics.  
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Figure S11. Localization of group differences in local metrics - Degree. Uncorrected significance 
levels of group comparisons for a sparsity thresholds of 10% are shown (yellow p<0.001; orange 
p<0.01; red p<0.05). Nodes surviving correction for multiple testing of the 160 ROIs are highlighted in 
white. Please note that the latter FDR procedure did not take into account the number of tested local 
metrics (as described in the main manuscript). None of these findings remained significant after 
correcting for multiple testing across regions and metrics. 
 

 
Figure S12. Localization of group differences in local metrics - Strength. Uncorrected significance 
levels of group comparisons for a sparsity thresholds of 10% are shown (yellow p<0.001; orange 
p<0.01; red p<0.05). Node surviving correction for multiple testing of the 160 ROIs are highlighted in 
white. Please note that the latter FDR procedure did not take into account the number of tested local 
metrics (as described in the main manuscript). None of these findings remained significant after 
correcting for multiple testing across regions and metrics.  
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Figure S13. Localization of group differences in local metrics - CPLloc. Uncorrected significance levels 
of group comparisons for a sparsity thresholds of 10% are shown (yellow p<0.001; orange p<0.01; 
red p<0.05). None of these findings remained significant after correcting for multiple testing across 
regions and metrics. 
 

ROI Increase 
in recAN 

punc 

postoccipital_L_160 0.00137 0.0021 

parietal_R_69 0.00129 0.0012 

parietal_L_62 0.00116 0.0076 

parietal_L_64 0.00105 0.0011 

occipital_L_142 0.00103 0.0035 

parietal_L_54 0.00101 0.0062 

precentralgyrus_R_53 0.001 0.0066 

parietal_R_74 0.001 0.0059 

parietal_R_65 0.00072 0.0064 

 

Table S3. Local assortativity. Brain regions showing increased local assortativity in recAN when 
compared to HC (uncorrected findings punc<0.01). The values in this table reflect the AUC values of 
the metric local assortativity across all tested sparsity thresholds and all ROIs. After correcting the 
level of significance for the number of tested brain regions and metrics using FDR following the same 
approach as for other local graph metrics in our original manuscript, only the vlPFC_R_15 showed a 
trend for decreased local assortativity (W=2159, pFDR=0.064). However, the average local assortativity 
across all 160 regions was significantly increased in recAN (W=1100, p=0.02). Thus, the increased 
global assortativity in recAN might be driven by multiple changes in local assortativity in several 
regions that do not reach significance.  
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