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1. Supplementary Methods
1.1. Data
1.1.1. Measures for ADHD symptoms
1.1.1.1. The Adult ADHD Self-Report Scales 
The Adult ADHD Self-Report Scales (ASRS), an 18-question scale, was developed in conjunction with the revision of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). The ASRS consists of two subscales, Inattention (nine items) and Hyperactivity-Impulsivity (nine items), according to the 18 DSM-IV ADHD symptom criteria. Each item asks how often a symptom occurred during the last 6 months on a 5-point Likert scale: 0=never, 1=rarely, 2=sometimes, 3=often, and 4=very often. The psychometric properties of the Chinese ASRS have been established in a sample of 4,329 Taiwanese young adults (Yeh et al., 2008). The intraclass correlations (ICCs) for test-retest reliability ranged from 0.80 for the Inattention subscale, 0.82 for the Hyperactivity-Impulsivity subscale, and .85 for the total score. The internal consistency (Cronbach’s α) was high for the Inattention subscale (0.87), the Hyperactivity-Impulsivity subscale (0.85), and the total score (0.91). It has been used in studies on adult ADHD and sleep problems, anxiety/depression symptoms, and quality of life in Taiwan (Gau et al., 2007; Chao et al., 2008).
1.1.1.2. The Swanson, Nolan, and Pelham, Version IV Scale (SNAP-IV)-Parent form
The SNAP-IV is a 26-item rating instrument including the core DSM-IV-derived ADHD subscales of IA, HI and OD subscales (items 1-9, 10-18, and 19-26, respectively) (Swanson et al., 2001). Each item is rated on a 4-point Likert scale, 0-3 for “not at all”, “just a little”, “quite a lot”, and “very much” based on and parents’ report. The norm and psychometric properties of the Chinese version of SNAP-IV have been well established in Taiwan by Gau and colleagues (Gau et al., 2008). The scale has good test-retest reliability (ICCs 0.59~0.72), high internal consistency (Cronbach’s α>0.88) and discriminative validity (Gau et al., 2008) and is commonly used in clinical evaluation and research in Taiwanese child and adolescent populations (Yang et al., 2013).  

1.1.1.3. The modified adult version of the ADHD supplement of the Chinese version of the Schedule for Affective Disorders and Schizophrenia–Epidemiological Version (K-SADS-E)
The K-SADS-E is a semi-structured interview scale for the systematic assessment of both past and current episodes of mental disorders in children and adolescents (Orvaschel et al., 1982). Development of the Chinese K-SADS-E was completed by the Child Psychiatry Research Group in Taiwan (Gau and Soong, 1999). This included a two-stage translation and modification for several items with psycholinguistic equivalents relevant to the Taiwanese culture and further modification to meet the DSM-IV diagnostic criteria, with high reliability (generalized kappa coefficients ranging from 0.73 to 0.96 for all mental disorders) and validity (sensitivity 78% and specificity 98%) (Gau et al., 2005). In order to obtain the information about ADHD symptoms and diagnoses in adulthood according to the DSM-IV diagnostic criteria, semi-structured interviews were conducted using both the modified adult ADHD supplement and the Conners' Adult ADHD Diagnostic Interview for DSM-IV (Takahashi et al., 2014). The results showed that the ADHD diagnosis in childhood and current adulthood based on the two clinical instruments achieved total agreement (i.e., people who had been diagnosed with ADHD in childhood and/or current adulthood using the modified adult ADHD supplement of the K-SADS-E also acquired the ADHD diagnosis based on the Conners' Adult ADHD Diagnostic Interview).

1.2. Analyses
1.2.1. Multi-echo independent component analysis (ME-ICA)
ME-ICA initially decomposed multi-echo rs-fMRI data into independent components using FastICA (Hyvarinen, 1999b). Independent components were subsequently categorized as BOLD or non-BOLD components based on Kappa and Rho values, which were yielded from signal models reflecting the BOLD-like or non-BOLD-like signal decay processes (Kundu et al., 2012). BOLD-related signals show linear dependence of percent signal changes on TE, which is the characteristic of the T2* decay (Huettel et al., 2008). On the other hand, non-BOLD signal amplitudes demonstrate TE-independence. TE dependence of BOLD signal was measured using the pseudo-F-statistic Kappa, with components that scaled strongly with TE having high Kappa scores. Non-BOLD components were identified by TE independence measured by the pseudo-F-statistic Rho. By removing non-BOLD components, data were denoised for head motion, physiological, and scanner artifacts (Kundu et al., 2013). 



1.2.2. Functional network connectivity analysis
1.2.2.1. Independent Component Analysis (ICA)
After preprocessing, the temporally concatenated probabilistic ICA algorithm (temporally concatenated) implemented in FSL MELODIC (Beckmann and Smith, 2004) was used to analyze the rs-fMRI data of all participants. Non-brain voxels were masked with voxel-wise demeaning of the data and normalization of the voxel-wise variance. Next, the processed data were whitened and projected into a 20-dimensional subspace using a Principal Components Analysis (PCA). This step provided a fine-grained decomposition of interconnected brain regions (Smith et al., 2009). These whitened observations were decomposed into sets of vectors that describe signal variation across (i) the temporal domain (time courses), (ii) the session/subject domain, and (iii) the spatial domain (spatial maps). This decomposition was implemented through a non-Gaussian spatial source distribution using a fixed-point iteration technique (Hyvarinen, 1999a). Estimated component maps were divided by the standard deviation of the residual noise, with a threshold of 0.5 set (the probability that needed to be exceeded by a voxel to be considered ‘active’ in the component of interest) by fitting a mixture model to the histogram of intensity values (Beckmann and Smith, 2004).
We selected resting-state networks according to their known spatial distribution (Smith et al., 2009; Yeo et al., 2011; Cocchi et al., 2012). We extracted 20 ICA components, 14 of which are consistently identified as canonical resting-state networks (Yeo et al., 2011). The similarity of these 14 resting-state networks with those previously identified was quantified using spatial correlation (all spatial correlation values >0.4) and confirmed by visual inspection. Only these 14 components (networks) were considered in subsequent analyses (Supplementary Fig. 2A).

1.2.2.2. Functional Network Connectivity
The summary time-course for each resting-state network was calculated at the individual participant’s level by spatial regression of the full set of 20 ICA components against each participant’s denoised rs-fMRI data. This approach models are overlapping variance to account for the potential effects of residual noise captured by the non-physiological valid components (N=6). We calculated functional network connectivity (FNC) (Jafri et al., 2008; Lv et al., 2016) using the Pearson correlation coefficient between each other summary time course. This resulted in a 3D FNC matrix with the dimensions of 14 × 14 (networks) × 203 (participants). Group differences in FNC were tested for each pair of networks using one-way analysis of variance (ANOVA), and FNC with significant group differences were further tested by 2-sample t-test to determine the direction of the difference. The significance threshold was set at q<0.05, corrected for multiple comparisons using false discovery rate (FDR) (Benjamini and Hochberg, 1995).

1.2.3. Principal component analysis for ADHD symptoms
To circumvent reporting biases (Asherson et al., 2016), core ADHD symptoms were encapsulated as factor scores (DiStefano et al., 2009) derived from a principal component analysis (PCA) of self-, parents-, and clinician-reported measures, including self-rated Adult ASRS (Yeh et al., 2008), parent-rated SNAP-IV (Gau et al., 2008), as well as a clinician-rated modified adult version of the ADHD supplement of the Chinese version of the K-SADS-E (Chang et al., 2013; Ni et al., 2013; Ni et al., 2017) (the number of ADHD measures used in the PCA was 3). Two principal components were extracted, which explained 88.25% of the total variance. Factors were orthogonalized using Varimax rotation. Among them, the first component explained 51.58% of the total variance, and all of the hyperactivity-impulsivity subscales from the above three measures were consistently loaded on this component. The second component explained 36.67% of the total variance, and scores of inattention subdomain across 3 measures were loaded on the component. The principal component analysis was implemented using IBM SPSS Statistics for Macintosh, Version 22.0 (IBM Corp., Armonk, NY, USA).

	Symptoms scores patterns loaded onto two components (rotated component matrix)

	
	Component

	
	1 (Hyperactivity-impulsivity)
	2 (Inattention)

	SNAP_Inattention
	0.244
	0.743

	SNAP_Hyperactivity-impulsivity
	0.842
	0.182

	K-SADS-E_Inattention
	0.224
	0.806

	K-SADS-E_ Hyperactivity-impulsivity
	0.798
	0.172

	ASRS-A
	0.227
	0.871

	ASRS-B
	0.754
	0.416



1.2.4. Canonical correlation analysis (CCA) 
Both connectivity and behavioral measures were normalized and demeaned. A further regression of in-scanner head motion confounds also performed following the approach of Smith and colleagues (Smith et al., 2015) (http://www.fmrib.ox.ac.uk/analysis/HCP-CCA). To avoid overfitting the CCA, a PCA was undertaken using the FSLNets toolbox (Smith et al., 2014) to reduce the dimensionality of the deconfounded functional connectivity matrix to three eigenvectors (explaining 31.83% of the total variance in the connectivity matrix; Supplementary Fig. 5). The data was reduced to this resolution to keep the methodological steps as per Smith et al. (Smith et al., 2015), given the three behavioral measures selected in the CCA. We note that no consensus exists for component number selection (Abdi and Williams, 2010). Thus, we also employed a confirmatory CCA analysis based on a larger dimensionality of 5 eigenvectors (explaining 43.9% of the variance in the connectivity matrix). The primary (3 eigenvectors, r=0.430, FWE-corrected p=0.037) and confirmatory CCA (r=0.446, FWE-corrected p=0.049; Supplementary Table 4b) yielded similar results. Thus, only results from the primary CCA are reported in the main text.  
We next assessed which functional connections were most strongly expressed by variations in the original sets of connections captured by each CCA mode. CCA provides an output vector describing the extent (weight) to which a given individual's connectivity pattern correlated with the CCA mode. We correlated this vector against the original connectivity matrix identified by the NBS analysis to obtain a vector mapping the relative weights and directional signs of the association between resting-state connectivity and the CCA mode (weighted feature vector). In line with what previously done, the strongest (top 25%) absolute values in this vector were retained to define the strongest associations between individual connectivity weights and behavioral measures (Smith et al., 2015). 

1.2.5. Clustering algorithms for categorically subtyping ADHD
To test the existence of ADHD categorical biotypes, we implemented several complementary analyses using the connectivity and clinical features derived from the significant CCA mode, and combined features from connectivity and clinical symptoms, respectively.
1.2.5.1. k-means clustering algorithm based on brain-behavior features derived from the significant CCA mode.  
To assess whether the brain-behavior associations identified by the CCA could be clustered into non-overlapping subgroups, we first used k-means clustering on the features linearly projected by the CCA. This standard clustering procedure uses individual brain-behavior associations to assign each participant to exactly one of k clusters (based on clinical ADHD subtypes, a k=2 or 3 was used here) (Venkataraman et al., 2009). To reach stable clustering results, for each setting of k, clustering was repeated for 10,000 times so that the participants-to-centroid distances within-cluster sum-of-squares were minimized. 
1.2.5.2. Multi-view spectral clustering algorithm based on features of functional connectivity and clinical symptoms
With regards to multi-view spectral clustering algorithm (Shi and Malik, 2000; Kumar and Daumé, 2011), we considered clusters derived from the analysis of altered functional connectivity in ADHD compared to controls and features related to clinical symptoms/IQ as two views contributing to the clustering. Using the multi-view spectral clustering framework, the substantial variability of categorical subgrouping across multimodal features (connectivity and behavior) could be modeled and accounted for. This novel clustering method has the advantage of effectively addressing heterogeneity in the considered features by maximizing the agreement across multimodal clusters (Shi and Malik, 2000; Kumar and Daumé, 2011).    
Spectral clustering uses connectivity (denoised NBS results) and clinical features (inattention, hyperactivity-impulsivity, and IQ), respectively, to generate two graphs. Nodes within the graphs represent individuals with ADHD whereas the edges represent the similarities between nodes (individuals). The two graphs (one mapping connectivity and one mapping behavior) were then partitioned using the normalized cut strategy, in which the top k eigenvectors of the normalized graph Laplacian, which carries the most discriminative information, are adopted to cut the graphs into clusters efficiently. Subsequent co-training algorithms search for target clusters that predict same labels for co-occurring patterns in each view. The spectral clustering algorithm of bi-partitioning sub-graph stopped when the normalized cut value (representing the similarity between the subjects within each possible cluster) is larger than the pre-set threshold. There is no consensus regarding the optimal threshold to be used. Thus, we examined thresholds ranging from 0.2 to 0.9 (incremental of 0.1) (Chen et al., 2013). We used 10,000 iterations for co-training algorithms to converge on stable clusters (permuting for each threshold).   
1.2.5.3. Validity of k-means clustering
We verify the validity of k-means clustering using average silhouette width values (Kononenko and Kukar, 2007), the Jaccard similarity (Hennig, 2008), and the gap statistic (Tibshirani et al., 2001). This information is provided in Supplementary Table 6 (average silhouette width values and the Jaccard similarity) and Supplementary Fig. 7 (the Gap statistic).
The silhouette width value is a combination measure assessing intra-cluster homogeneity and inter-cluster separation. It is calculated by measuring how similar that point is to points in its own cluster when compared to points in other clusters. The cutoffs to interpret the validity of k-means clustering based on average silhouette width values are as follows (Kononenko and Kukar, 2007):

	0.71-1.0 A strong structure has been found.

	0.51-0.70 A reasonable structure has been found.

	0.26-0.50 The structure is weak and could be artificial. Try additional methods of data analysis.

	<0.25 No substantial structure has been found.



Jaccard’s similarity (Hennig, 2008) is defined as the size of the intersection divided by the size of the union of the assigned clusters and the resulting partitions from resampling pipelines. It allows estimating the frequency with which similar clusters were recovered in the data. The clustering results with Jaccard’s similarity <0.5 are considered unstable (Hennig, 2008). 
The gap statistic (Tibshirani et al., 2001) standardizes the graph of log(Wk), where Wk is the within-cluster dispersion defined by the within-cluster sum of squares around the cluster means, by comparing it to its expectation under an appropriate null reference distribution of the data. The ’k’ is the number of clusters. The estimate of the optimal number of clusters is defined by searching for the local maximum of the graph, and selecting the smallest k within one standard error of the local max.  

1.2.5.4. The issue of sample size for clustering analyses
There is no clear indication regarding the minimum sample size necessary for clustering analyses. However, it is suggested that the minimal sample size for clustering analyses should not be less than 2m cases (m=number of features used), with 5*2m considered preferable (Dolnicar, 2002). In the present study, we fed features linearly projected by the CCA (i.e., 1 for the brain connectivity feature; 1 for the behavior feature) into k-means clustering. That is, the minimum sample size for k-means clustering is 20 subjects (i.e., 5*22=20). Concerning the multi-view spectral clustering, there has been very limited prior work investigating the minimum sample size required to obtain meaningful clusters. The multi-view spectral clustering algorithm is, however, considered robust for the high dimensionality and small-sample-size problem (Tao et al., 2014). Indeed, a smaller sample size is generally required to obtain a solution (i.e., the most robust clustering results) using multi-view spectral clustering compared to single-view clustering (Kumar and Daumé, 2011).  
	In keeping with the above, the current sample size (N=80 ADHD) is appropriate for both k-means and spectral clustering (Dolnicar, 2002; Kumar and Daumé, 2011; Tao et al., 2014).
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2. Supplementary Tables 
Supplementary Table 1a. Demographics among attention-deficit hyperactivity subtypes (ADHD) (based on the current presentation of ADHD psychopathology) 
	Mean (SD)
	ADHD-C (N=32)
	ADHD-I (N=47)
	ADHD-H (N=1)
	Statisticsc

	Age 
	27.5 (5.2)
	26.3 (5.9)
	19.7
	p=0.352

	Sex (M/F)
	25/7
	30/17
	1/0
	p=0.319

	Handedness (R/L)
	24/8
	38/9
	1/0
	p=0.800 

	FIQ
	108.8 (8.3)
	106,4 (11.5)
	115
	p=0.280

	VIQ
	108.8 (11.0)
	104.1 (11.1)
	103
	p=0.069

	PIQ
	110.3 (9.9)
	106.7 (19.1)
	128
	p=0.320

	ADHD symptoms
	
	
	
	

	 Inattentiona
	21.4 (3.8)
	18.6 (5.4)
	3
	p=0.011

	 Hyperactivity/Impulsivitya
	17.6 (6.4)
	11.0 (5.0)
	13
	p<0.001 

	 Opposition-defiancea
	13.8 (5.3)
	9.9 (5.7)
	7
	p=0.003

	 ASRS-A
	28.5 (3.4)
	26.4 (4.9)
	4
	p=0.037

	 ASRS-B
	24.2 (4.0)
	17.4 (5.5)
	12
	p<0.001

	Mean frame-wise displacementb (mm)
	0.050 (0.025)
	0.048 (0.025)
	0.049
	p=0.737





Supplementary Table 1b. Demographics among attention-deficit hyperactivity (ADHD) subtypes (based on the childhood presentation of ADHD psychopathology)
	Mean (SD)
	ADHD-C (N=51)
	ADHD-I (N=28)
	ADHD-H (N=1)
	Statisticsb

	Age 
	27.1 (5.9)
	26.3 (5.2)
	19.7
	p=0.557

	Sex (M/F)
	39/12
	16/12
	1/0
	p=0.161

	Handedness (R/L)
	39/12
	24/4
	1/0
	p=0.564 

	FIQ
	106.7 (9.6)
	108.5 (11.7)
	115
	p=0.461

	VIQ
	105.7 (11.8)
	106.5 (10.3)
	103
	p=0.744

	PIQ
	107.1 (17.0)
	110.0 (14.4)
	128
	p=0.443

	ADHD symptoms
	
	
	
	

	 Inattentiona
	19.7 (5.1)
	19.9 (4.8)
	3
	p=0.877

	 Hyperactivity/Impulsivitya
	15.5 (6.4)
	10.3 (5.2)
	13
	P<0.001

	 Opposition-defiancea
	11.8 (6.0)
	10.9 (5.8)
	7
	p=0.506 

	 ASRS-A
	27.2 (4.3)
	27.4 (4.8)
	4
	p=0.812

	 ASRS-B
	21.7 (5.1)
	17.3 (6.5)
	12
	p=0.001

	Mean frame-wise displacementb (mm)
	0.049 (0.024)
	0.049 (0.026)
	0.049
	p=0.917


a Measured by the Swanson, Nolan, and Pelham, version IV (SNAP-IV) scale.
b Estimated by the Euclidian norm (enorm: square root of the sum of squares of the differences in motion derivatives), computed with AFNI's 1d_tool.py. 
c Statisitcal inference was only made from comparisons between ADHD-C and ADHD-I subgroups.
Abbreviation: -C=combined subtype; -I=inattentive subtype; -H=hyperactive-impulsive subtype; ASRS=Adult ADHD Self-Report Scale; FIQ=full-scale intelligence quotient; PIQ=performance intelligence quotient; VIQ=verbal intelligence quotient; M=male; F=female; R=right; L=left; SD=standard deviation.

Supplementary Table 2. Details of the nodes within the altered network of ADHD (network-based statistics, NBS)
	　
	MNI coordinates

	Nodes
	x
	y
	z

	DMN_Frontal_Sup_R
	22 
	39 
	39 

	DMN_Occipital_Mid_L
	-41 
	-75 
	26 

	DMN_ParaHippocampal_L
	-26 
	-40 
	-8 

	FPTC_Frontal_Mid_L
	-23 
	11 
	64 

	FPTC_Parietal_Inf_R
	44 
	-53 
	47 

	SN_Precentral_R
	42 
	0 
	47 

	SN_Insula_L
	-35 
	20 
	0 

	SN_Insula_R
	36 
	22 
	3 

	SN_Cingulum_Mid_L
	-1 
	15 
	44 

	SN_Frontal_Mid_R
	31 
	33 
	26 

	SN_Cingulum_Mid_L
	5 
	23 
	37 

	COTC_Frontal_Sup_L
	-16 
	-5 
	71 

	COTC_SupraMarginal_R
	54 
	-28 
	34 

	COTC_Rolandic_Oper_L
	-45 
	0 
	9 

	COTC_Supp_Motor_Area_R
	13 
	-1 
	70 

	COTC_Insula_R
	49 
	8 
	-1 

	COTC_Temporal_Pole_Sup_L
	-51 
	8 
	-2 

	COTC_Supp_Motor_Area_R
	7 
	8 
	51 

	COTC_Insula_R
	36 
	10 
	1 

	COTC_Cingulum_Mid_L
	-5 
	18 
	34 

	SN_Frontal_Mid_R
	31 
	33 
	26 

	SN_Cingulum_Mid_L
	5 
	23 
	37 

	COTC_Frontal_Sup_L
	-16 
	-5 
	71 

	COTC_SupraMarginal_R
	54 
	-28 
	34 

	COTC_Rolandic_Oper_L
	-45 
	0 
	9 

	COTC_Supp_Motor_Area_R
	13 
	-1 
	70 

	COTC_Insula_R
	49 
	8 
	-1 

	COTC_Temporal_Pole_Sup_L
	-51 
	8 
	-2 

	COTC_Supp_Motor_Area_R
	7 
	8 
	51 

	COTC_Insula_R
	36 
	10 
	1 

	COTC_Cingulum_Mid_L
	-5 
	18 
	34 

	DAN_Parietal_Inf_L
	-33 
	-46 
	47 

	VAN_Frontal_Inf_Tri_L
	-49 
	25 
	-1 

	subC_Putamen_L
	-22 
	7 
	-5 

	subC_Putamen_R
	23 
	10 
	1 

	subC_Pallidum_R
	15 
	5 
	7 

	subC_Thalamus_R
	9 
	-4 
	6 

	subC_Thalamus_L
	-2 
	-13 
	12 

	Vis_Cuneus_R
	15 
	-77 
	31 

	Vis_Cuneus_L
	-16 
	-77 
	34 


Abbreviations: ADHD=attention-deficit hyperactivity disorder; MNI=Montreal Neurological Institute; DMN=default mode network; SN=salience network; COTC=cingulo-opercular network; FPTC=frontoparietal task control network; VAN=ventral attention network; DAN=dorsal attention network; SSM=somatosensorimotor network; Aud=auditory network; Vis=visual network; subC=subcortical; Supp=supplementary; R=right; L=left; Sup=superior; Inf=inferior; Mid=middle; Oper=opercular.  


Supplementary Table 3. Average values of functional connectivity in the pairwise connections of interest (network-based statistics, NBS)
	Pairs
	Control
	ADHD

	Network_Region
	Network_Region
	Mean
	STE
	STD
	Mean
	STE
	STD

	DMN_Occipital_Mid_L
	SN_Insula_L
	0.211 
	0.022 
	0.241 
	0.339 
	0.029 
	0.263 

	DMN_Occipital_Mid_L
	SN_Insula_R
	0.118 
	0.024 
	0.266 
	0.298 
	0.027 
	0.239 

	DMN_Frontal_Sup_R
	SN_Cingulum_Mid_L
	0.249 
	0.028 
	0.315 
	0.420 
	0.039 
	0.347 

	DMN_ParaHippocampal_L
	SN_Cingulum_Mid_L
	0.108 
	0.023 
	0.257 
	0.249 
	0.032 
	0.286 

	DMN_Occipital_Mid_L
	COTC_Frontal_Sup_L
	0.238 
	0.028 
	0.311 
	0.420 
	0.036 
	0.324 

	DMN_Occipital_Mid_L
	COTC_SupraMarginal_R
	0.273 
	0.023 
	0.258 
	0.414 
	0.031 
	0.279 

	SN_Precentral_R
	COTC_Rolandic_Oper_L
	0.249 
	0.024 
	0.266 
	0.398 
	0.031 
	0.280 

	DMN_Occipital_Mid_L
	COTC_Supp_Motor_Area_R
	0.114 
	0.027 
	0.294 
	0.278 
	0.036 
	0.321 

	DMN_Occipital_Mid_L
	COTC_Insula_R
	0.057 
	0.025 
	0.279 
	0.210 
	0.033 
	0.293 

	DMN_Occipital_Mid_L
	COTC_Temporal_Pole_Sup_L
	0.199 
	0.026 
	0.288 
	0.366 
	0.037 
	0.334 

	DMN_Occipital_Mid_L
	COTC_Supp_Motor_Area_R
	0.170 
	0.025 
	0.276 
	0.308 
	0.031 
	0.275 

	DMN_ParaHippocampal_L
	COTC_Supp_Motor_Area_R
	0.156 
	0.023 
	0.251 
	0.284 
	0.026 
	0.229 

	DMN_Occipital_Mid_L
	COTC_Insula_R
	0.180 
	0.023 
	0.253 
	0.310 
	0.029 
	0.255 

	FPTC_Frontal_Mid_L
	COTC_Cingulum_Mid_L
	0.472 
	0.029 
	0.317 
	0.630 
	0.030 
	0.268 

	SN_Cingulum_Mid_L
	DAN_Parietal_Inf_L
	0.332 
	0.023 
	0.257 
	0.494 
	0.032 
	0.290 

	FPTC_Parietal_Inf_R
	VAN_Frontal_Inf_Tri_L
	0.073 
	0.025 
	0.273 
	0.212 
	0.029 
	0.264 

	SN_Insula_R
	VAN_Frontal_Inf_Tri_L
	0.129 
	0.027 
	0.303 
	0.283 
	0.029 
	0.260 

	SN_Frontal_Mid_R
	VAN_Frontal_Inf_Tri_L
	0.062 
	0.022 
	0.244 
	0.193 
	0.026 
	0.228 

	COTC_Temporal_Pole_Sup_L
	VAN_Frontal_Inf_Tri_L
	0.362 
	0.028 
	0.307 
	0.541 
	0.032 
	0.288 

	FPTC_Frontal_Mid_L
	subC_Putamen_L
	0.264 
	0.019 
	0.209 
	0.384 
	0.026 
	0.234 

	DMN_Occipital_Mid_L
	subC_Putamen_R
	0.172 
	0.020 
	0.219 
	0.292 
	0.026 
	0.233 

	FPTC_Frontal_Mid_L
	subC_Putamen_R
	0.283 
	0.020 
	0.219 
	0.419 
	0.022 
	0.199 

	DMN_ParaHippocampal_L
	subC_Putamen_L
	0.281 
	0.020 
	0.224 
	0.407 
	0.028 
	0.253 

	DMN_Frontal_Sup_R
	subC_Pallidum_R
	0.212 
	0.020 
	0.221 
	0.347 
	0.033 
	0.291 

	DMN_Frontal_Sup_R
	subC_Thalamus_R
	0.210 
	0.022 
	0.242 
	0.364 
	0.033 
	0.295 

	DMN_Frontal_Sup_R
	subC_Thalamus_L
	0.163 
	0.024 
	0.266 
	0.323 
	0.033 
	0.292 

	SN_Insula_R
	SSM_Postcentral_L
	0.316 
	0.021 
	0.232 
	0.437 
	0.027 
	0.237 

	COTC_Rolandic_Oper_L
	SSM_Postcentral_L
	0.451 
	0.027 
	0.299 
	0.596 
	0.027 
	0.243 

	COTC_Temporal_Pole_Sup_L
	SSM_Postcentral_L
	0.462 
	0.026 
	0.290 
	0.616 
	0.034 
	0.305 

	COTC_Supp_Motor_Area_R
	SSM_Postcentral_R
	0.295 
	0.028 
	0.308 
	0.449 
	0.031 
	0.279 

	SN_Insula_R
	SSM_Precentral_R
	0.332 
	0.024 
	0.261 
	0.472 
	0.026 
	0.234 

	COTC_Supp_Motor_Area_R
	SSM_Precentral_R
	0.364 
	0.027 
	0.300 
	0.537 
	0.029 
	0.260 

	COTC_Temporal_Pole_Sup_L
	SSM_Postcentral_L
	0.397 
	0.026 
	0.284 
	0.566 
	0.036 
	0.326 

	SN_Cingulum_Mid_L
	SSM_Insula_R
	0.322 
	0.024 
	0.264 
	0.468 
	0.033 
	0.294 

	COTC_Supp_Motor_Area_R
	SSM_Insula_R
	0.319 
	0.025 
	0.272 
	0.478 
	0.032 
	0.290 

	COTC_Supp_Motor_Area_R
	SSM_Postcentral_L
	0.243 
	0.025 
	0.272 
	0.389 
	0.032 
	0.286 

	COTC_Supp_Motor_Area_R
	Aud_Rolandic_Oper_L
	0.337 
	0.025 
	0.279 
	0.481 
	0.031 
	0.280 

	SN_Insula_R
	Vis_Cuneus_R
	0.212 
	0.022 
	0.247 
	0.337 
	0.028 
	0.251 

	SN_Cingulum_Mid_L
	Vis_Cuneus_R
	0.257 
	0.023 
	0.255 
	0.396 
	0.030 
	0.267 

	SN_Insula_R
	Vis_Cuneus_L
	0.260 
	0.023 
	0.257 
	0.390 
	0.028 
	0.249 

	COTC_Supp_Motor_Area_R
	Vis_Cuneus_L
	0.268 
	0.022 
	0.247 
	0.409 
	0.025 
	0.224 


Abbreviations: ADHD=attention-deficit hyperactivity disorder; STE=standard error; STD=standard deviation; DMN=default mode network; SN=salience network; COTC=cingulo-opercular network; FPTC=frontoparietal task control network; VAN=ventral attention network; DAN=dorsal attention network; SSM=somatosensorimotor network; Aud=auditory network; Vis=visual network; subC=subcortical; Supp=supplementary; R=right; L=left; Sup=superior; Inf=inferior; Mid=middle; Oper=opercular.  


Supplementary Table 4a. The significant canonical correlation analysis (CCA) mode (p<0.05, family-wise error corrected) of the primary analysis. 
	CCA mode 
	One

	df1
	9

	df2
	180.25

	F
	2.03

	r
	0.430

	Wilk’s lambda
	0.7740

	Familywise error corrected p
	0.0367




==================================================================

Supplementary Table 4b. The significant CCA mode (p<0.05, family-wise error corrected) based on the 5 eigenvectors derived from the connectivity matrix. 

	CCA mode 
	One

	df1
	15

	df2
	199.17

	F
	1.61

	r
	0.446

	Wilk’s lambda
	0.7030

	Familywise error corrected p
	0.0491



Supplementary Table 5. Canonical correlation analysis (CCA) mode connectivity weight and associated interregional pairs 
	Pairs
	CCA edge strength modulation

	Network_Region
	Network_Region
	

	DMN_Occipital_Mid_L
	SN_Insula_R
	0.549 

	DMN_Occipital_Mid_L
	COTC_Supp_Motor_Area_R
	0.656 

	DMN_Occipital_Mid_L
	COTC_Insula_R
	0.757 

	DMN_Occipital_Mid_L
	COTC_Temporal_Pole_Sup_L
	0.755 

	DMN_Occipital_Mid_L
	COTC_Insula_R
	0.623 

	FPTC_Frontal_Mid_L
	COTC_Cingulum_Mid_L
	0.568 

	FPTC_Frontal_Mid_L
	subC_Putamen_L
	0.510 

	DMN_Occipital_Mid_L
	subC_Putamen_R
	0.643 

	FPTC_Frontal_Mid_L
	subC_Putamen_R
	0.510 

	DMN_Frontal_Sup_R
	subC_Pallidum_R
	0.502 

	DMN_Frontal_Sup_R
	subC_Thalamus_R
	0.500 

	DMN_Frontal_Sup_R
	subC_Thalamus_L
	0.564 


Abbreviations: DMN=default mode network; SN=salience network; COTC=cingulo-opercular network; FPTC=frontoparietal task control network; subC=subcortical; R=right; L=left; Sup=superior; Mid=middle; Supp=supplementary.  




Supplementary Table 6. Validity indices of k-means clustering method (based on the feature vectors of individual participant’s weight derived from the connectivity and symptoms matrices of canonical correlation analysis)
	k-means clustering

	　
	2 clusters
	3 clusters

	Jaccard similarity
	0.3385
	0.5737

	Average silhouette width values
	0.4640
	0.4861







3. Supplementary Figures
[image: ]
Supplementary Figure 1. Changes in functional connectivity between adult ADHD and matched healthy controls across different brain parcellations. The network-based statistic (NBS) showed stronger (generally stronger positive correlations, see Supplementary Table 3) functional connectivity in a single whole-brain network in ADHD compared to healthy controls. (A) 255 regions of interest parcellation (Power et al., 2011). (B) 160 regions of interest parcellation (Dosenbach et al., 2010). (C) 200 regions of interest parcellation (Craddock et al., 2012). (D) the anatomical parcellation based on The Harvard-Oxford probabilistic cortical and subcortical atlases (www.fmrib.ox.ac.uk/fsl). Overall, the results obtained from different brain parcellations were similar.




        [image: ]
Supplementary Figure 2. With additional adjusting for demographic features, group differences in inter-regional functional connectivity. The network-based statistic (NBS) adjusting for gender/sex, levels of in-scanner head motion, and age identified a single network differentiating adult ADHD from healthy controls. This network was of largely the same pattern with the main analysis as shown in Figure 2: Adults with ADHD showed increased correlations between the DMN and frontoparietal network, the DMN and attention networks (including both salience/cingulo-opercular and dorsal attention components), the DMN and subcortical regions, the salience/cingulo-opercular network and sensory-motor and visual network, as well as the salience/cingulo-opercular network and dorsal attention alongside frontoparietal networks. 
[image: ]
Supplementary Figure 3. Group differences in functional connectivity based on different height thresholds in the network-based statistic (NBS). Across different t-statistics height thresholds (namely t=3 corresponding to uncorrected p=0.003; t=3.3 corresponding to uncorrected p=0.001; t=3.9 corresponding to uncorrected p=0.0001), the NBS consistently identified the similar patterns of hyperconnectivity between the DMN and attention and cognitive control networks, the DMN and subcortical regions, and the salience/cingulo-opercular network and sensory processing networks. These results were in line with the main discovered connectivity differences based on t=3.5 corresponding to uncorrected p=0.0005.  
[image: ]

Supplementary Figure 4. Independent component analysis (ICA) on neuroimaging data. (A) Based on the group ICA, we identified 20 spatial components. The topology of 14 components related to recognized functional brain networks (Yeo et al., 2011; Cocchi et al., 2012). These 14 components were used for the confirmatory functional network connectivity analysis (see text) (Jafri et al., 2008). (B) Results from the functional network connectivity analysis are presented. Relative to the controls, adults with ADHD exhibited a significantly increased positive interaction between the default-mode and cingulo-opercular/salience networks (false discovery rate corrected q=0.044). 
[image: ]   
Supplementary Figure 5. The proportion of variance explained by the eigenvectors defined by a principal component analysis on functional connectivity differences between ADHD and controls (derived from the network-based statistics). The three eigenvectors (red) used in the canonical correlation analysis (CCA, see text) explained 31.83% of the total variance in between-groups connectivity. Including two extra eigenvectors allows to explain 43.90% of the variance. CCA based on both three and five eigenvectors yielded a similarly significant CCA mode.

                  [image: ]   
Supplementary Figure 6. Supplementary canonical correlation analysis (CCA) based on the altered functional connectivity identified by the supplementary network-based statistic (NBS) adjusting for gender/sex, levels of in-scanner head motion, and age. This supplementary CCA yielded one significant mode, similar to the main result (Figure 3), which linked the brain connectivity and clinical symptoms-intelligence. The functional connections expressing the strongest positive associations in this mode from the supplementary analysis also implicated connectivity between the DMN and cingulo-opercular, as well as the DMN and subcortical regions.
[image: ]

Supplementary Figure 7. The gap statistic for the k-means clustering method (based on the feature vectors of individual participant’s weight derived from the connectivity and symptoms matrices of canonical correlation analysis). The gap statistic estimates the optimal number of clusters by searching the local maximum of the graph, then selecting the smallest k within one standard error (as indicated by the bars in the figure) of the local max [Gap(k) ≥ Gap(k+1) – SEk+1]. Based on the gap statistic, the suggested optimal number of clusters was one.




            [image: ]

Supplementary Figure 8. Test for ADHD categorical biotypes. (A) K-means analysis failed to reveal valid clusters based on the individual associations between functional connectivity and behavior. The absence of clear clusters in the data is evident from visual inspection of the figure. (B) The number (No.) of clusters detected by the multi-view spectral clustering algorithm changed as a function of the preset cut threshold, indicating that no stable decomposition was achievable. Overall, results from these analyses provide compelling evidence for the absence of non-overlapping clusters in the data. FIQ=full-scale IQ; HI=hyperactivity-impulsivity.
              [image: ]
Supplementary Figure 9. (A) Males and females with ADHD, (B) regardless of the clinical subtypes, were distributed evenly along the one-dimensional axis identified by the main CCA. 
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Connectivity weights (U1)
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