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The main goal of the model presented in this paper is to identify the source of human

Brucella infection and quantify the contribution of different potential source populations

to the probability of infection in humans (ph). We do this by integrating serological and

genetic data. Using serology data alone we can identify which animal population (cows

(c) or caprids (s)) drives human (h) infection. However, only its integration with genetic

typing data will allow us to distinguish which animal population is infecting humans with

which Brucella species, i.e. Brucella abortus (a) or melitensis (m).

Human infection probability

Ultimately we are interested in estimating the probability of infection with Brucella abor-

tus (a) or melitensis (m) in humans in household i (pTypeh(i)), which is defined through

a logit transformation such that:

pTypeh(i) =
exp(lnTypeh(i))

1 + exp(lnTypeh(i))
(1)

where lnTypeh(i) is the linear predictor of the logit transformed (pTypeh(i)), formulated

as a function of covariates that describe the Brucella transmission process in humans as

a function of the infection in cows and caprids. In this case, the linear predictor is:

lnTypeh(i) = β0h + β1hYc,a,i + β2hYs,a,i + β3hYc,m,i + β4hYs,m,i (2)

The coefficient β0h corresponds to the intercept, while β1h corresponds to the coefficient

governing the effect of the estimated number of cows infected with B. abortus in the ith

household (Yc,a,i), β2h to the estimated number of caprids infected with B. abortus (Ys,a,i),

β3h to the estimated number of cows infected with B. melitensis (Yc,m,i) and β4h to the

estimated number of caprids infected with B. melitensis (Ys,m,i). For further details on

the estimation of these Y values see the subsection “Livestock infection with B. abortus

& melitensis”. The priors for all β coefficients are provided in Table S2.

In turn, pTypeh(i) is the mean probability of an individual from household i being seropos-

itive. Assuming that the jth individual was sampled in household i, the probability rh(j, i)

that, at sampling, the jth individual was seropositive is:

pTypeh(i) = mean(rh(, i)) (3)
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This probability - rh(j, i) - translates the individual level probability of infection to the

household level - pTypeh(i) - generating the link to integrate serology data (collected

at the individual level) and genetics (estimated at the household level). Furthermore,

rh(j, i) corresponds to the probability of an individual being truly seropositive after tak-

ing account of diagnostic test performance and the potential for misclassification of the

serostatus of an individual (see below).

Serological Test Performance

To account for the potential for misclassification of individual serostatus (considering both

human and animal serological test data) we introduce probabilities of Type I and Type II

errors in serological diagnostic testing. Based on the serological literature, we expect high

probability of correct classification (q+ & q−) and low probability of false classification

(1− q+ & 1− q−) (Table S1 & S2).

Table S1: Probabilities associated with misclassification of Brucella serostatus.

True state

+ -

Test + q+ 1−q−

result - 1−q+ q−

The likelihood that an individual j is classified as seropositive (P (yj = 1)) or seronegative

(P (yj = 0)) is based on serological test data y and was defined in our model as:

P (yj = 1) = rh(j, i)q+ + (1− rh(j, i))(1− q−) (4)

P (yj = 0) = rh(j, i)(1− q+) + (1− rh(j, i))q− (5)

The likelihood that the data y from individual j was generated from a Bernoulli distri-

bution with success probability P , i.e. probability of classifying an individual as positive

upon testing, is:

yi,h ∼ Bernoulli(P (yj,h = 1)) (6)

Where yi,h = 1 corresponds to a Brucella positive titer and yi,h = 0 to a Brucella negative

titer. If both realisations are equally likely, P (yh = 1) = P (yh = 0) = 0.5.
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Livestock infection with B. abortus & B. melitensis

A similar approach to that described for human infection was used to estimate the proba-

bility of cattle and caprid infection and the number of animals in each household infected

with B. abortus and/or B. melitensis. However, in contrast to the serology model where

we included the potential for generation of false positive or false negative test results, a

similar individual level mechanism was not used for genetic typing data. In this step of

the model we estimate the proportion of seropositive animals that are positive for each

Brucella species. We consider that all seropositive individuals are genetically positive

and therefore did not include evaluation of the performance of the genetic diagnostic tests

(see manuscript for further evaluation and handling of this assumption). In this way, the

integration of the serological and genetic diagnostic test data enable estimation of more

robust estimates of the proportion of individuals infected with each genetic species than

would be possible using just the genetic data alone.

We describe the probabilities that a seropositive cow or caprid in the ith household is

infected with B. melitensis or B. abortus through logit transformations of the linear pre-

dictors (i.e. lnTypec,m(i), lnTypes,m(i), lnTypec,a(i) or lnTypes,a(i)). These are described

by the number of cattle and sheep present at the ith household as covariates.

lnTypec,m(i) = β0c,m + β1c,mNc,i + β2c,mNs,i (7)

lnTypes,m(i) = β0s,m + β1s,mNs,i + β2s,mNc,i (8)

lnTypec,a(i) = β0c,a + β1c,aNc,i + β2c,aNs,i (9)

lnTypes,a(i) = β0s,a + β1s,aNs,i + β2s,aNc,i (10)

The coefficient β0 corresponds to the intercept, while β1 and β2 correspond to the co-

efficients describing the effect of the number of cows (Nc,i) and caprids (Ns,i) in each

household.

Finally, we estimate the expected number of B. abortus (Yc,a(i) and Ys,a(i)) and B. meliten-

sis (Yc,m(i) and Ys,m(i)) infected individuals in each household, from a binomial distri-

bution in which the chance of an individual being genetically positive for each Brucella

species is raised by the chance of being seropositive in each the household (see Serology

section below):
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Yc,m(i) ∼ Bin(lnTypec,m(i) ∗ lnSerc, Nc(i)) (11)

Yc,a(i) ∼ Bin(lnTypec,a(i) ∗ lnSerc, Nc(i)) (12)

Ys,m(i) ∼ Bin(lnTypes,m(i) ∗ lnSers, Ns(i)) (13)

Ys,a(i) ∼ Bin(lnTypes,a(i) ∗ lnSers, Ns(i)) (14)

The estimated number of animals per household infected with B. abortus and B. melitensis

are then used to estimate the probability of human infection with Brucella as in Equation

(2).

Livestock & human infection with Brucella

In order to determine what can be inferred from serology alone and what additional un-

derstanding can be gained through integration of the genetic data both the animal and

human probabilities of infection were also estimated using serology data only. The ap-

proach used was similar to that described for human infection using genetics data. For

each host population, a Bernoulli process was used to describe the probability of being

seropositive given a probability of missclassification, as in Equations (3) to (6) while the

linear predictor of the logit transformed probability (e.g. lnSerc(i)) of individual infection

at the household level, that mirrors equation (2), was defined:

for cattle,
lnSerc(i) = θ0,c + θ1c ∗Nc(i) + θ2c ∗Ns(i) (15)

for caprids,
lnSers(i) = θ0,s + θ1s ∗Ns(i) + θ2s ∗Nc(i) (16)

and for humans,
lnSerh(i) = θ0,h + θ1h ∗ Yc(i) + θ2h ∗ Ys(i) (17)

where the coefficient θ0c and θ0s correspond to the intercepts, θ1c, θ2c, θ1s, θ2s correspond

to the effect of the number of cows (Nc(i)) and caprids (Ns(i)) on the probability of

infection of cattle and caprids, respectively. The coefficents θ1h and θ2h correspond to the

effect of the estimated number of Brucella infected cows (Yc(i)) and caprids (Ys(i)) in

each household on the probability of human infection, estimated as:

Yc(i) ∼ Bin(lnSerc(i), Nc(i)) and Ys(i) ∼ Bin(lnSers(i), Ns(i)) (18)

The priors for these coefficients are defined in Table S2.
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Table S2: Prior distributions for the coefficients used to model human infection risk with
B. abortus and B. melitensis. The coefficient denomination is shown as presented in the
model description (Coef.) with corresponding notation in the JAGS code (Par. JAGS ).

Variable Coef.
Par.

JAGS
Distribution Prior

Human genetics

Intercept β0h bhgen0 Normal ∼ dnorm(0, 0.001)

Cattle with abortus β1h bha1 Normal ∼ dnorm(0, 0.001)

caprids with abortus β2h bha2 Normal ∼ dnorm(0, 0.001)

Cattle with melitensis β3h bhm1 Normal ∼ dnorm(0, 0.001)

caprids with melitensis β4h bhm2 Normal ∼ dnorm(0, 0.001)

Animal genetics

Intercept (melitensis) β0c,m/β0s,m bcm0/bsm0 Normal ∼ dnorm(0, 0.001)

Intercept (abortus) β0c,a/β0,as bca0/bsa0 Normal ∼ dnorm(0, 0.001)

No. cattle on cattle β1c,m/β1c,a bcm1/bca1 Normal ∼ dnorm(0, 0.001)

No. caprids on cattle β2c,m/β2c,a bcm2/bca2 Normal ∼ dnorm(0, 0.001)

No. caprids on caprids β1s,m/β1s,a bsm1/bsa1 Normal ∼ dnorm(0, 0.001)

No. cattle on caprids β2s,m/β2s,a bsm2/bsa2 Normal ∼ dnorm(0, 0.001)

Human serology

Intercept θ0h bh0 Normal ∼ dnorm(0, 0.001)

No. cattle on humans θ1h bh1 Normal ∼ dnorm(0, 0.001)

No. caprids on humans θ2h bh2 Normal ∼ dnorm(0, 0.001)

Animal serology

Intercept θ0c/θ0s bc0/bs0 Normal ∼ dnorm(0, 0.001)

No. cattle on cattle θ1c bc1 Normal ∼ dnorm(0, 0.001)

No. caprids on cattle θ2c bc2 Normal ∼ dnorm(0, 0.001)

No. caprids on caprids θ1s bs1 Normal ∼ dnorm(0, 0.001)

No. cattle on caprids θ2s bs2 Normal ∼ dnorm(0, 0.001)

Sensitivity serology

Correct detection q+ Fp Beta ∼ dbeta(25, 0.5) or 1

False detection q− Fn Beta ∼ dbeta(0.5, 25) or 0

*Normal distributions are expressed in JAGS notation, i.e. in terms of mean and precision.

Model fit and diagnostics

All models were fitted using JAGS software which uses Gibbs sampling to generate pos-
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terior distributions of the parameters given the likelihood, prior distributions and the

data itself. The JAGS code used to run our model is given in the subsequent section.

We ran our models for 3 · 105 iterations with burn-in of 1.5 · 105 to achieve convergence.

Convergence was assessed by visual inspection of the chains and posterior distributions,

as well as Gelman-Rubin diagnosis. We further evaluated model fit by comparing the

posterior distributions with the data and, where appropriate, the true values used to gen-

erate the data. We further assess model fit and the impact of the uninformative priors by

ensuring that we can recover the simulated coefficients, that are similar to those of the

field data. In addition to showing that the model is capable of capturing the necessary

dynamics, the recovery of the original simulated parameters also indicates that the mag-

nitude of the priors is not influencing the ability of the model to converge to correct values.

JAGS code

model{
for(i in 1:Nhh){

#Serology

#Cattle

for(j in 1:Ncows){
y cows[i,j] ∼ dbern(pSer cows[i,j])

pSer cows[i,j]=Fp cows*r cows[i,j]+(1-r cows[i,j])*Fn cows

r cows[i,j]=1-mean(lnSer cows[i]) }
logit(lnSer cows[i])=bc0+bc1*Ncows HH[i]+bc2*Ncaprids HH[i]

ystar cows ∼ dbin(lnSer cows[i],Ncows HH[i])

#caprids

for(j in 1:Ncaprids){
y caprids[i,j] ∼ dbern(pSer caprids[i,j])

pSer caprids[i,j]=Fp cows*r caprids[i,j]+(1-r caprids[i,j])*Fn caprids

r caprids[i,j]=1-mean(lnSer caprids[i]) }
logit(lnSer caprids[i])=bs0+bs1*Ncaprids HH[i]+bs2*Ncows HH[i]

ystar caprids ∼ dbin(lnSer caprids[i]*Ncaprids HH[i])

#Humans

for(j in 1:Nhumans){
y humans[i,j] ∼ dbern(pSer humans[i,j])

pSer humans[i,j]=Fp humans*r humans[i,j]+(1-r humans[i,j])*Fn humans

r humans[i,j]=1-mean(pr humans[i]) }
logit(lnSer humans[i])=bh0+bh1*ystar cows[i]+bh2*ystar caprids[i]
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#Genetics

#Cattle

ym cows[i] ∼ dbin(pType m cows[i], Ncows typed[i])

logit(pType m cows[i])=bcm0+bcm1*Ncows HH[i]+bcm2*Ncaprids HH[i]

ystar m cows ∼ dbin(pType m cows[i],ystar cows[i])

ya cows[i] ∼ dbin(pType a cows[i], Ncows typed[i])

logit(pType a cows[i])=bca0+bca1*Ncows HH[i]+bca2*Ncaprids HH[i]

ystar a cows ∼ dbin(pType a cows[i],ystar cows[i])

#caprids

ym caprids[i] ∼ dbin(pType m caprids[i], Ncaprids typed[i])

logit(pType m caprids[i])=bsm0+bsm1*Ncaprids HH[i]+bsm2*Ncows HH[i]

ystar m caprids ∼ dbin(pType m caprids[i],ystar caprids[i])

ya caprids[i] ∼ dbin(pType a caprids[i], Ncaprids typed[i])

logit(pType a caprids[i])=bsa0+bsa1*Ncaprids HH[i]+bsa2*Ncows HH[i]

ystar a caprids ∼ dbin(pType a caprids[i],ystar caprids[i])

#Humans

for(j in 1:Nhumans){
y humans[i,j] ∼ dbern(pType humans[i,j])

pType humans[i,j]=FpType humans*rType humans[i,j]+

(1-rType humans[i,j])*FnType humans

r Type humans[i,j]=1-mean(pType humans[i]) }
logit(pType humans[i])=bhType0+bha1*ystar a cows[i]+bha2*ystar a caprids[i]+

bhm1*ystar m cows[i]+bhm2*ystar m caprids[i]

}#end household loop

For prior specification please see table S2.

}#end model
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S2. Simulations

The simulation of the data for this study was performed based on the modelling framework

described above. Twelve distinct datasets were simulated, one for each of the combina-

tions of the three epidemiological scenarios and the four population structures described

in the main manuscript.

To simulate human infection status a binomial process was used to generate the num-

ber of Brucella positive humans at each household (yType humans(i)) as a function of

the total number of animals infected with each Brucella species at each household (e.g.

ym caprids[i], ya caprids[i], ym cows[i], and/or ya cows[i]). The probability of a human

in the ith household being infected with Brucella (pType humans(i)) was simulated as

the binomial logistic proportion of the individuals that were tested (Nhumans[i]). Details

of the R code used for these simulations are given below (See box R code for simulations).

The simulated datasets include binary indicators of infection status (infected or not) for

all humans and animals in each population. For humans the (Brucella infection status

was simulated, analogous to serological diagnostic test data. For animals the B. melitensis

and B. abortus infection status was simulated for each individual. This animal infection

status corresponds to genetic typing data. The serostatus of all animals positive for B.

melitensis and/or B. abortus was defined as positive. All other animals were defined as

negative.

The first part of this process that simulates Brucella positive humans is analogous to

Equation 2 above except that the ystar values in Equation 2 are estimates of the actual Y

values used in the simulations (e.g. ystar m caprids[i] is an estimate of the ym caprids[i]

value generated in the simulations). The number of infected humans at each household

was simulated at the household level as described above and positive status was then

randomly allocated to the simulated number of positive humans for each household to

generate the individual based dataset.

To generate the Y values used above (for the number of animals infected with each Bru-

cella species in each household), the infection status of animals (cattle and caprids) was
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simulated independently for B. melitensis and B. abortus. Bernoulli processes were used

to describe the probability that an individual animal was positive for a given Brucella

species. The probability of infection in each case (e.g. pType m caprids[i,j], was defined

through a logit transformed linear function of covariates that describe the Brucella species

transmission processes in animals as a function of the number of cows and caprids present

at the household (i). These processes are analogous to the model Equations 7 to 10 above.

The parameter values used in the simulations were specified for each of the distinct epi-

demiological scenarios as given in Table S3. Parameter values were selected and set by

examining the relationships between key values (e.g. cattle seroprevalence and cattle pop-

ulation size) in the Tanzanian data set included in this study and with reference to other

previously published studies. Values of baseline prevalence parameters were selected to

ensure plausible final seroprevalence values for the simulated human, cattle and caprid

populations(e.g. ranging between 1 and 16% for humans and 1 and 10% for cattle and

caprids).
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R code for simulations

for (i in 1:Nhh){

#Human infections

pType humans[i]<- invlogit (bhType0 + bha1 * ya cows[i] + bha2 * ya caprids[i]

+ bhm1 * ym cows[i] + bhm2 * ym caprids[i])

yType humans[i]<- rbinom(1, Nhumans[i], pType humans[i])

}

#Animal infections

#caprid melitensis

for (j in 1:Ncaprids){
pType m caprids[i,j]<- invlogit (bsm0 + bsm1 * Ncaprids HH[i] + bsm2 * Ncows HH)[i]

ym caprids[i,j]<- rbinom (1, 1,pType m caprids[i,j])

}

#caprid abortus

for (j in 1:Ncaprids){
pType a caprids[i,j]<- invlogit (bsa0 + bsa1 * Ncaprids HH[i] + bsa2 * Ncows HH)[i]

ya caprids[i,j]<- rbinom (1, 1, pType a caprids[i,j])

}

#Cattle melitensis

for (j in 1:Ncows){
pType m cows[i,j]<- invlogit (bcm0 + bcm1 * Ncows HH[i] + bcm2 * Ncaprids HH)[i]

ym cows[i,j]<- rbinom (1, 1, pType m caprids[i,j])

}

#Cattle abortus

for (j in 1:Ncows){
pType a cows[i,j]<- invlogit (bca0 + bca1 * Ncows HH[i] + bca2 * Ncaprids HH[i])

ya cows[i,j]<- rbinom (1, 1, pType a cows[i,j])

}
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Table S3: Parameter values used for the simulation of alternative epidemiological scenar-
ios. The parameter notation is shown as presented in the model descriptions (Par.) with
corresponding notation in the R code (Par. R).

Variable Par. Par. R
Scenario

1

Scenario

2

Scenario

3

Human genetics
Baseline prevalence - bpType human0.01 0.02 0.01
Intercept β0h bhType0 log(bpType human/1-bpType human)
N cattle with abortus β1h bha1 0.35 0.0000001 0.0000001
N caprids with abortus β2h bha2 0.0000001 0.0000001 0.0000001
N cattle with melitensis β3h bhm1 0.0000001 0.0000001 0.35
N caprids with melitensis β4h bhm2 0.7 0.7 0.7

Abortus in Cattle
Baseline prevalence - bpType a cows 0.02 0.0000001 0.02
Intercept β0ca bca0 log(bpType a cows/(1-bpType a cows))
N cattle in herd β1c,a bca1 0.08 0.0000001 0.0000001
N caprids in flock β2c,a bca2 0.0000001 0.0000001 0.0000001

Abortus in caprids
Baseline prevalence - bpType a caprids0.0000001 0.0000001 0.001
Intercept β0sa bsa0 log(bpType a caprids/(1-bpType a caprids))
N caprids in flock β1s,a bsa1 0.0000001 0.0000001 0.0000001
N cattle in herd β2s,a bsa2 0.0000001 0.0000001 0.0000001

Melitensis in Cattle
Baseline prevalence - bpType m cows0.0000001 0.02 0.01
Intercept β0cm bcm0 log(bpType m cows/(1-bpType m cows))
N cattle in herd β1c,m bcm1 0.0000001 0.0000001 0.0000001
N caprids in flock β2c,m bcm2 0.0000001 0.002 0.002

Melitensis in caprids
Baseline prevalence - bpr m caprids 0.02 0.02 0.02
Intercept β0sm bsm0 log(bpType m caprids/(1-bpType m caprids))
N caprids in flock β1s,m bsm1 0.008 0.008 0.008
N cattle in herd β2s,m bsm2 0.0000001 0.0000001 0.0000001

12


