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The model (1) was simplified in 2 steps: first, the

within-cohort dynamics was described by sub-

sequent infection generations, and second, approxi-

mations were made for the separate generations. We

start with a few simplifying assumptions:

– a=1: waning of immunity is irrelevant due to

continuous re-infection

– c=b : precise estimates for c are not available and

the order of magnitude is correct

– a new immune variable ~yyk is defined by the

approximation 1+ymk � (1+yk)
m=~yymk . Note that

~yy0=1.

Then, by regarding only the first ingested dose of

each infection generation k (in original time:wt=a0vt
only for t=0, 5, 10, etc, otherwise wt=0), the dy-

namics are fully described by v and ~yy only. This re-

sults in the following model :

vk+1=wvk+
rvk

~yy2k 1+pvkð Þ
� �m (A1:1)

~yyk+1=~yyk 1+pvkð Þ 1+
pl1vk
~yymk

� �
(A1:2)

The new parameters are w=(s(1xa0))
5, the oocyst

survival probability per infection generation, i.e. per

5 original time steps; r=a0a1l1l2, the maximum oo-

cyst multiplication rate; and p=ba0a1, the immunity

growth rate per oocyst per unit ~yy. Each broiler cohort

consists of four infection generations. Because it is

the gamont stage that causes most of the damage,

damage can be described by dk=vkxwvkx1, the

amount of oocysts excreted in generation k.

Figure A1 shows the functions V and D (defined

in the main text) and the bifurcation diagram for

model (A1). It appears that all typical features of

the original model (1) as shown in Fig. 3 are present

in the new model : the wavelike Fig. A1a and A1b,

and the unstable dynamics with some cleaning rates

in Fig. A1c; only the chaotic dynamics has disap-

peared. However, with other parameter sets (e.g. the

E. brunetti parameter set) the simplified model is still

capable of displaying chaotic dynamics.

The next step was to define functions for the

damage level and the final oocyst level due to each

infection generation, Dk and Vk (like D and V, these

are defined on the log scale). We observe that

Dk=Vkx(4 – k) logw, ko1, because damage is de-

termined by the number of gamonts which is equal to

the number of excreted oocysts. This leaves us to find

expressions for all Vk, starting with k=0 and k=1:

V0= log v0+4log w (A2:1)

V1= log v0+log rxmlog (1+pv0)+3 log w (A2:2)

For excretion in generations k=2, 3, and 4 to be

relevant for the final oocyst level, immunity should

still be small in generation kx1. As long as the oocyst

level and immunity are small in the early generations

(vB0 and yB1), model (2) can be approximated by

vk+1=rvk and yk+1=1+pl1vk. Therefore, the level

of immunity can be described in terms of the oocyst

level, yk=1+pl1vk/r, which leads to the following

function for vk+1 :

vk+1=wvk+
rvk

1+pl1vk=rð Þ2m 1+pvkð Þm

� rk+1v0

1+pl1rkv0=rð Þ2m 1+prkv0ð Þm
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Figure A1. Results of the simplified models (equations

A1 in thick black lines and A2 in thin grey lines) for the

default parameter set; (a) relation D between initial

oocyst level log v0 and maximum damage log dmax during

a single chicken cohort; (b) relation V between initial

oocyst level log v0 and final oocyst level log vend ;

(c) bifurcation diagram for the between-cohort dynamics

of log v0 as a function of the cleaning efficiency log r.
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Thus, Vk, k>1, is equal to:

Vk= log v0+k log rx2m log (1+pl1r
kx2v0)

xm log (1+prkx1v0)+(4xk) log w (A2:3)

All functions Dk and Vk are plotted in Fig. A1

(thin grey lines).

As indicated in the main text, unpredictable

damage hinges on unstable dynamics and large

differences between minima and maxima in D. The

condensed model (A2) gives insight into the role

of the different parameters:

– the distance between the peaks of Dk and Dk+1

(and between Vk and Vk+1), k>1, in the logv0

direction is equal to log r. The distance between

the peaks of D1 and D2 (and between V1 and V2)

also increases with increasing log r. Therefore,

an increase in log r results in larger differences

between damage minima and maxima, and it re-

sults in a larger domain in V with negative slopes

<x1.

– the distance between the peaks of Vk and Vk+1,

k>1, in the logvend direction is equal to logw.
There is no effect on D, but the domain in V with

possibly unstable between-cohort dynamics in-

creases if logw decreases.

– the slopes left of the peaks of all Vk is 1, the slope

right of the peak of V1 is 1xm, and the slopes right

of the peaks of all Vk, k>1, is 1x3m. Thus, the

minimum slopes for realistic values of m are

smaller than x1 and these are always close to the

minima in D. A larger m will result in smaller

minima in D and possibly less stable between-co-

hort dynamics.

– the minimum slopes 1x3m are due to two terms in

Vk, k>1: x2mlog (…) and xmlog (…), which

contribute to Vk only if pl1r
kx2v0 and prkx1v0 are

notably larger than 0. The peak between in-

crease (slope=1) and decrease (slope=1x3m) will

be sharpest if both terms are of the same order of

magnitude, that is if l1Br, because that will cause

the most prominent transition between maximum

and minimum slope. Sharper peaks will result in a

sharper profile in D, and in a larger domain in V

with unstable dynamics.

– an increase in logp causes a translation of the series

of peaks in the (x1,x1) direction. This does not

affect the qualitative behaviour of the between-

cohort dynamics.
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