Comparison of the light-limited growth of the nitrogen-fixing cyanobacteria *Anabaena* and *Aphanizomenon*

BY W. T. (PIM) DE NOBEL^{1*}, HANS C. P. MATTHIJS¹, ERIC VON ELERT² and LUUC R. MUR¹

¹Laboratorium voor Microbiologie, ARISE, Universiteit van Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, The Netherlands ²Limnologisches Institut, Universität Konstanz, 78457 Konstanz, Germany

(Received 17 June 1997; accepted 10 November 1997)

SUMMARY

The effect of simultaneous N_2 fixation and light limitation on the growth of two strains of *Anabaena* sp. Bory de St. Vincent and *Aphanizomenon flos-aquae* (L.) Ralfs was investigated using continuous cultures. Under severely light-limited conditions, *Aphanizomenon* showed a broader absorption spectrum (due to the presence of phycoerythrin), a higher maximum efficiency of photosynthesis, a higher steady-state N_2 fixation activity and a higher growth affinity for light than did *Anabaena*. On the other hand, under light saturation, *Anabaena* showed a higher maximum rate of O_2 production and a higher maximum specific growth rate than *Aphanizomenon*. These monoculture results characterize *Anabaena* and *Aphanizomenon*, in relative terms, as a 'sun' and a 'shade' species respectively, and are in accordance with field observations. The difference between the two species in their acclimatory response is discussed in terms of a species-specific alteration of the PSI:PSII stoichiometry. Besides the species-specific modulation of the accessory pigments, such an acclimation would provide a biochemical basis for the observed physiological differences. The monoculture results were used to differentiate the niches of the two species and suggested that *Aphanizomenon* would competitively displace *Anabaena* under N_2 -fixing, light-limited conditions. However, when both species were grown together, *Anabaena* became dominant and seemed to be the superior competitor for light. In order to explain this finding, the possible effects of release of allelopathic compounds, or dynamic aspects of light supply, are discussed.

Key words: Competition, cyanobacteria, light limitation, nitrogen fixation, PSI:PSII stoichiometry.

INTRODUCTION

The taxonomically closely related, and morphologically similar, heterocystous cyanobacteria *Anabaena* spp. and *Aphanizomenon* spp. are commonly present in eutrophic shallow freshwater lakes (Mur & Schreurs, 1995; Roijackers & Joosten, 1996). In general, cyanobacterial species capable of N_2 fixation will have a competitive advantage over non-diazotrophs if N_2 is the only N source available for growth. This leaves open the question of what determines the outcome of competitive interaction between different species of diazotrophic cyanobacteria. Whilst this might relate simply to different nitrogenase activities, other biochemical, physiological or ecological factors, either indirectly or not directly related to N_2 fixation, could determine which diazotroph becomes dominant in which environment.

During bloom development, phytoplankton growth in eutrophied systems often becomes N, P or light-limited. Experiments showed that the combination of N₂-fixing and P-limited conditions is disadvantageous for *Aphanizomenon* (Wallström, Johansson & Larsson, 1992; De Nobel *et al.*, 1997 *a*,

^{*} To whom correspondence should be addressed.

E-mail: a417pimn@chem.uva.nl

Abbreviations: Chl, chlorophyll a; HL, high light; ML, medium light; LL, low light; $I_{\rm k}$, light saturation value (µmol photons m⁻² s⁻¹); K_1 , half saturation constant for light-limited growth (µmol photons m⁻² s⁻¹); OD₇₅₀, optical density at wavelength 750 nm (cm⁻¹); P/I curve, light saturation curve of photosynthesis; $P_{\rm max}$, maximum rate of O₂ production (mg O₂ g⁻¹ protein h⁻¹); PFR, photosynthetic photon fluence rate (µmol photon m⁻² s⁻¹); PSI, photosystem 1; PSII, photosystem 2; $q_{\rm N}$, steady-state N₂-fixation activity (µg N mg⁻¹ protein h⁻¹); QY, maximum quantum yield for O₂ production (mol O₂ mol⁻¹ photons); $R_{\rm d}$, rate of respiration in the dark (mg O₂ g⁻¹ protein h⁻¹); α , maximum efficiency of photosynthesis (mg O₂ g⁻¹ protein h⁻¹) mol⁻¹ photons m² s); $\sigma_{\rm chl}$, chlorophyll-specific optical absorption cross-section (m² g⁻¹ protein); μ , specific growth rate (h⁻¹); $\mu_{\rm max}$, maximum specific growth rate (h⁻¹); $\mu_{\rm max}/K_1$, growth affinity for light (m² mol⁻¹ photons).

b). According to a statistical analysis of field data, the occurrence of *Anabaena* blooms coincides with a relatively high underwater light availability (i.e. a high ratio of euphotic depth and mixing depth), whilst *Aphanizomenon* seems much less light-demanding (Schreurs, 1992). Hence, under N_2 -fixing, light-limited conditions, *Aphanizomenon* might have a competitive advantage over *Anabaena*.

This study compares the light-limited growth of Anabaena sp. and Aphanizomenon flos-aquae under N_2 -fixing conditions in continuous culture. The acclimatory responses of light absorption, photosynthetic activity, N_2 fixation activity and growth are examined, in order to ascertain whether Aphanizomenon is a 'low-light' or 'shade' species in comparison to Anabaena. In addition, a competition experiment under light-limited conditions was carried out in order to test the hypothesis that Aphanizomenon is better acclimated than Anabaena to N_2 -fixing, light-limited conditions.

MATERIALS AND METHODS

Organisms and growth conditions

Anabaena sp. Bory de St Vincent was isolated from a surface bloom in Lake Naardermeer, The Netherlands. Aphanizomenon flos-aquae (L.) Ralfs PCC 7905 originated from Lake Brielse Meer, The Netherlands. Both lakes are eutrophic, shallow, freshwater lakes. Hereafter, the two strains are referred to as Anabaena and Aphanizomenon respectively.

Both species were grown as non-axenic monocultures of single filaments in continuous culture using N-free BG-11 medium (Rippka et al., 1979). Continuous cultures were of the diluted-turbidostat type (auxostats), where the dilution rate is adjusted to maintain a constant, low optical density (OD_{750}) . Three conditions were used: light-saturated conditions (high light, HL), moderately light-limited conditions (medium light, ML) and severely lightlimited conditions (low light, LL). Illumination was provided by circular Philips TLE 32W/33 lamps (three, one and one covered by a neutral density filter respectively), operated in a 12/12 h light/dark cycle. The average photosynthetic photon fluence rate (PPFR) within a culture was calculated according to Van Liere, Loogman & Mur (1978). The OD₇₅₀ values of cultures were kept low (absorption at $750 \text{ nm} < 0.075 \text{ cm}^{-1}$ in order to approximate a homogeneously distributed PPFR in monoculture experiments but not during competition experiments. Air-flow through the culture vessel provided mixing and gas exchange. The air was washed twice in $0.05 \text{ M} \text{ H}_2\text{SO}_4$: once before entering the culture to prevent input of air-borne NH3, and again after leaving the culture to measure NH₃ release. The

temperature was maintained at $20 \text{ }^{\circ}\text{C} \pm 1.5 \text{ }^{\circ}\text{C}$ and the pH ranged between 6.9 and 7.4.

Steady-state cultures were examined on 2 d separated by at least a week. Unless stated otherwise, samples were taken in triplicate at the middle of the light period. The data represent the average of the two series. Sample measurements were normalized to protein. Protein proved to be a relatively constant fraction of d. wt (c. 25 %). A competition experiment with *Anabaena* and *Aphanizomenon* was run in duplicate in chemostats at a dilution rate of 0.004 h⁻¹, after mixing of pre-grown LL continuous cultures.

Protein, chlorophyll, ammonium, culture density and cell numbers

The protein and chlorophyll contents, as well as the concentration of dissolved inorganic N (i.e. NH_4^+), were analysed after centrifugation (4000 g, 4 min). Protein was determined following the Lowry method (Herbert, Phipps & Strange, 1971). Chlorophyll *a* was measured spectrophotometrically in dimethylformamide extracts (Porra, Thompson & Kriedemann, 1989). Dissolved NH_4^+ was measured in the supernatant using salicylate and nitroprusside (Kempers & Kok, 1989). During the competition experiments, the changes in culture density were followed by measurements of OD_{750} , and cell numbers of the two species were monitored microscopically.

Nitrogen fixation

The number of heterocysts, expressed as a percentage of the total cell number, was calculated after counting at least 500 cells. Steady-state N₂-fixation activities (q_N) were calculated by the Droop Cell-Quota model. In a diazotrophically growing steady state, the product of growth rate and total N concentration equals the gross N uptake rate mediated by N₂ fixation (Droop, 1974). Total N was determined after Kjeldahl digestion and subsequent NH₄⁺ analysis of samples from the effluent collected over 24 h. The amount of gaseous NH₃ in exhausted air was negligible (< 2 % of total N in the effluent).

Growth/irradiance response

The growth rates in monocultures of *Anabaena* and *Aphanizomenon* were described using Monod kinetics (Monod, 1942):

$$\mu(I) = \frac{\mu_{\max}I}{K_I + I},\tag{1}$$

where μ_{max} is the maximum specific growth rate, K_{I} is the half-saturation constant for light-limited growth, and *I* is the average PPFR (in the culture). The Monod equation was fitted to the data using non-linear regression.

Photosynthesis/irradiance response

Light saturation curves of photosynthesis (P/I curve) were determined from the rates of O_2 exchange in incubation chambers as described by Dubinsky *et al.* (1987). The three fundamental P/I parameters, maximum rate of O_2 production (P_{max}), maximum efficiency of photosynthesis (α) and the rate of respiration in the dark (R_d) were derived by fitting the data to a hyperbolic tangent model (Jassby & Platt, 1976):

$$P(I) = P_{\max} \tanh\left(\frac{\alpha I}{P_{\max}}\right) - R_{\rm d}.$$
 (2)

After 15 min pre-incubation in darkness, respiration was measured for 9 min. Subsequent photosynthesis measurements were made at 12 different PPFRs ranging from 5 to 2000 μ mol photons m⁻² s⁻¹, of which the initial seven were below the lightsaturation value ($I_{\rm k} = P_{\rm max}/\alpha$). Each PPFR was supplied for 3 min and the rates of O₂ exchange were calculated from the linear increase or decrease in O₂ concentration. In order to minimize effects of photo inhibition (Henley, 1993), measurements were completed within 45 min.

Light absorption

Chlorophyll-specific and protein-specific optical absorption cross-sections ($\sigma_{\rm ehl}$ and $\sigma_{\rm prot}$) were determined from *in vivo* absorption spectra as described by Kroon *et al.* (1992). The maximum quantum yield for O₂ production (QY) was calculated according to Tilzer (1984) as the ratio between the maximum efficiency of photosynthesis and the optical absorption cross-section (QY = α/σ).

Chlorophyll fluorescence

Chlorophyll *a* fluorescence measurements were made *in situ* at room temperature using the saturation-pulse method described by Schreiber, Schliwa & Bilger (1986), and the experimental setup described by Ibelings, Kroon & Mur (1994). A saturating pulse of light (12000 μ mol photons m⁻² s⁻¹, 0.8 s), which induced maximal fluorescence (all PSII reaction centres closed), was administered at 15-min intervals. The fluorescence variables were used to calculate the quantum yield of non-cyclic electron transport as described by Genty, Briantais & Baker (1989). Hereafter, this photochemical efficiency of PSII per absorbed photon is referred to as photon yield (Hofstraat *et al.*, 1994).

RESULTS

Growth and nitrogen fixation

Growth/irradiance response. The growth rates of Anabaena and Aphanizomenon increased with in-

Table 1. Maximum specific growth rate (μ_{\max}) half saturation constant for light-limited growth (K_I) and growth affinity for light (μ_{\max}) for Anabaena sp. and Aphanizomenom flos-aquae under N_2 -fixing conditions

	$\mu_{ m max}$ (h ⁻¹)	$egin{array}{c} K_{\mathrm{I}} \ (\mu\mathrm{mol}\ \mathrm{photons}\ \mathrm{m}^{-2}\ \mathrm{s}^{-1}) \end{array}$	$\mu_{ m max}/K_{ m I} \ ({ m m}^2~{ m mol}^{-1} \ { m photons})$	
Anabaena	0.046	95	0.13	
A phanizomenon	0.026	46	0.16	

The parameter estimates of $\mu_{\rm max}$ and $K_{\rm I}$ are based on least-squares, nonlinear fits to eqn (1) (see 'Materials and Methods') using the steady-state data from continuous cultures ($r^2 > 0.95$).

creasing PPFR. Anabaena had a higher maximum specific growth rate (μ_{max}) than Aphanizomenon (Table 1). However, Aphanizomenon had a slightly higher growth affinity for light (μ_{max}/K_I) and thus grows faster than Anabaena under severely lightlimited conditions (i.e. at PPFRs < 17.7 μ mol photons m⁻² s⁻¹ according to the solving of the species' Monod equations).

Nitrogen fixation. Heterocyst frequencies were identical for the two species and amounted to 5–7 % of total cell number, independent of the conditions of illumination. Acclimation to ML or LL resulted in a decrease of steady-state N₂-fixation activity (q_N) for both species. However, LL hampered q_N of Anabaena more than that of Aphanizomenon (Table 2).

Photosynthesis

Chlorophyll content. For both species decreased PPFR resulted in a higher chlorophyll *a* (Chl) content, but more so for *Aphanizomenon* than for *Anabaena* (Table 2).

Photosynthesis/irradiance response. The observed changes in the P/I curves (Fig. 1), resulting from the different light conditions (HL, ML & LL), clearly distinguished Anabaena from Aphanizomenon with respect to their patterns of acclimation to light limitation. The maximum rate of O2 production $(P_{\rm max})$ for Anabaena increased with decreasing PPFR whilst that for Aphanizomenon markedly decreased with decreasing PPFR, in spite of its increased Chl content. For both species the maximum efficiency of photosynthesis (α) increased with decreasing PPFR but, at each condition of illumination α for Aphanizomenon was higher than that for Anabaena. The rate of respiration in the dark (R_d) did not show a clear pattern, though it tended to decrease with decreasing PPFR and seemed somewhat greater in Aphanizomenon than in Anabaena. The difference in acclimatory response between both species was reflected in their light saturation values (I_k) . For

582 W. T. De Nobel and others

Table 2. Steady-state N_2 fixation activity (q_N) , chlorophyll a content (Chl), maximum rate of O_2 production (P_{\max}) , maximum efficiency of photosynthesis (α) , rate of respiration in the dark (R_d) , light saturation value (I_k) , chlorophyll-specific optical absorption cross-section (σ_{chl}) , protein-specific optical absorption cross-section (σ_{prot}) and maximum quantum yield for O_2 production (QY) for Anabaena sp. and Aphanizomenon flos-aquae under light-saturating (HL), moderately light-limiting (ML) and severely light-limiting (LL) photosynthetic photon fluence rates (PPFR)

	Anabaena			Aphaniz	omenon	
	HL	ML	LL	HL	ML	LL
PPFR						
(μ mol photons m ⁻² s ⁻¹)	190	60	25	160	50	25
$q_{\rm N}$	6.76	5.12	1.40	3.69	3.28	2.56
$(\mu g \ N \ mg - protein \ n -)$ Chl $(mg \ Chl \ g^{-1} \ protein)$	23.1	22.4	25.7	20.4	29.5	29.9
P_{max} (mg O σ^{-1} protein h^{-1})	375	478	577	341	301	268
α α (mg O σ^{-1} protein h ⁻¹ (mg) ⁻¹ photons m ² s)	1.86	2.51	2.68	2.21	3.36	3.90
R_d (mg O g ⁻¹ protein h ⁻¹)	72.4	41.4	44.7	83.0	43·0	82.9
I_k	202	190	215	154	90	69
$\sigma_{\rm ehl}$ ($m^2 q^{-1}$ chlorophyll)	0.77	1.01	1.29	1.13	0.91	1.11
σ_{prot} (m ² σ^{-1} protein)	0.018	0.022	0.033	0.023	0.027	0.034
QY (mol O_2 mol ⁻¹ photons)	0.09	0.10	0.07	0.08	0.11	0.10

The parameter estimates of P_{max} , α and R_{d} are based on least-squares, nonlinear fits to eqn (2) (see 'Materials and Methods') using the data from P/I curves ($r^2 > 0.96$).

Figure 1. Variation of the rates of O_2 exchange, expressed relative to protein (*a*), (*b*) or chlorophyll (*c*), (*d*), with photosynthetic photon fluence rate for *Anabaena* sp. (*a*), (*c*) and *Aphanizomenon flos-aquae* (*b*), (*d*). P/I curves were determined for steady-state cells originating from cultures that were light-saturated (HL; —), moderately light-limited (ML; --) or severely light-limited (LL; ···). Lines are least-squares, non-linear fits to eqn (2) (see 'Materials and Methods') using the data from P/I curves.

Figure 2. In vivo absorption spectra of Anabaena sp. (a) and Aphanizomenon flos-aquae (b). Absorption spectra were determined for steady-state cells originating from cultures that were light-saturated (HL; —), moderately light-limited (ML;--) or severely light-limited (LL; \cdots). The spectra are normalized to the red absorption peak of chlorophyll a (675–680 nm).

Anabaena, $I_{\rm k}$ remained more or less constant with decreasing PPFR but, for Aphanizomenon, $I_{\rm k}$ decreased considerably (Table 2).

Light absorption. The normalized absorption spectra of Anabaena and Aphanizomenon show that absorption by the accessory pigments increased with decreasing PPFR (Fig. 2). For Anabaena, absorption increased most strikingly at c. 635–640 nm (phycocyanin, PC), indicating an increased PC:Chl ratio. For Aphanizomenon, increased absorption at 635–640 nm was accompanied by an even greater increase at c. 575–580 nm (phycoerythrin, PE). Hence, the spectra of Aphanizomenon reveal a moderate increase in the PC:Chl ratio but a considerably increased PE:PC ratio.

The chlorophyll-specific optical absorption crosssection (σ_{chl}) of Anabaena increased with decreasing PPFR whilst σ_{chl} remained more or less constant for Aphanizomenon (Table 2). For both species the protein-specific optical absorption cross-section (σ_{prot}) increased with decreasing PPFR but more so for Anabaena than for Aphanizomenon (Table 2). Based on these values, and those presented for α , the calculated maximum quantum yields for O₂ production (QY = α/σ) by the two species showed opposite trends (Table 2). Under LL conditions the QY of Aphanizomenon increased in comparison to the QY under HL conditions, and eventually became higher than that of Anabaena.

Chlorophyll fluorescence. During the light period of both the HL and ML cultures, the photon yields of

Figure 3. Diel variation of photon yield for *Anabaena* sp. (*a*) and *Aphanizomenon flos-aquae* (*b*). Photon yields are based on *in situ* chlorophyll *a* fluorescence of light-saturated (HL; —) and moderately light-limited (ML; ---) steady-state cells. The dark periods are indicated by black bars. Note that the time period covers 1.25 diel cycles.

Figure 4. Competition between *Anabaena* sp. (\bigcirc) and *Aphanizomenon flos-aquae* (\square) under N₂-fixing, light-limited conditions. Cells were grown in a chemostat culture at a dilution rate of 0.004 h⁻¹. +, optical density (OD₇₅₀) of the culture. One of the duplicate experiments is depicted.

Anabaena and Aphanizomenon were comparable, although the mean photon yield of HL cells was lower than that of ML cells (0.27 and 0.39 respectively; Fig. 3). The biomass of the LL cultures was too low to allow an accurate measurement of chlorophyll *a* fluorescence (data not shown). Remarkably, the photon yields during the dark period differed for the two species. Although the photon yield of Anabaena decreased only slightly during the dark period, that of Aphanizomenon showed a pronounced decrease, especially in the ML culture.

Competition

The competition experiment was run in duplicate and the duplicates showed the same result: *Anabaena*

Figure 5. Specific growth rates of *Anabaena* sp. (\Box) and *Aphanizomenon flos-aquae* (\boxtimes) during the competition experiment shown in Figure 4. The specific growth rates were calculated from successive sampling days, and are presented as weekly averages (mean \pm sp).

competitively displaced Aphanizomenon when the two species were grown together under light-limited conditions (Fig. 4). It should be noted that the turbidity (OD750) increased during the experiment (c. 25–20 μ mol photons m⁻² s⁻¹), resulting in a progressive increase in the severity of light limitation, but that the decrease in the average PPFR within the culture was not (yet) enough to become disadvantageous to Aphanizomenon. The growth rates of both species are presented in Figure 5. Notwithstanding the qualitative outcome of the experiment, at first both species increased their growth rate. In week 3, Aphanizomenon even grew faster than Anabaena, whose growth rate had already decreased. Aphanizomenon collapsed in week 4, however, whilst the growth rate of Anabaena approached the dilution rate. Hence, Anabaena eventually prevailed, and seemed to be the superior competitor for light.

DISCUSSION

Light-limited growth of diazotrophs

The growth rate of light-limited cyanobacteria will depend primarily on their capability to capture light and the efficiency with which they use this light energy for growth. Under N₂-fixing conditions, *Anabaena* showed a substantially higher maximum specific growth rate (μ_{max}) than *Aphanizomenon*. The lower μ_{max} of *Aphanizomenon* eventually leads to its competitive displacement under conditions of nutrient and light excess (De Nobel *et al.*, 1997*a*). On the other hand, the slightly higher growth affinity for light of *Aphanizomenon* suggests a potential competitive advantage in case of light-limited conditions.

Growth of diazotrophs relies on a number of processes. The most obvious ones are light absorption, photosynthesis and N₂ fixation. Both species lowered their steady-state N₂ fixation activity (q_N) with decreasing PPFR, but q_N of *Aphanizomenon* was less sensitive to light-limited conditions than was that of *Anabaena*. Interestingly, under P-limited conditions, q_N of *Aphanizomenon* was also less

responsive than that of *Anabaena* to changes in the severity of the limitation (De Nobel *et al.*, 1997*a*). It seems that *Aphanizomenon* has a relatively constant but low q_N , whilst *Anabaena* increases its q_N whenever possible (e.g., during the alleviation of P-limited or light-limited conditions).

Photosynthetic activity was determined as O₂ exchange in measurements of P/I curves. The initial slope of the P/I curve equals the maximum efficiency of photosynthesis (α) , i.e. the apparent quantum yield of O₂ production per unit of incident irradiance. In general, photosynthetic organisms respond to a decrease in the incident irradiance by increasing α (Henley, 1993). However, the physiological acclimation of the underlying photosynthetic machinery can vary, and organisms have been grouped according to characteristic changes in their P/I curves (Richardson, Beardall & Raven, 1983). Although Wilhelm (1993) rightly advised against the interpretation of P/I curves in terms of changes in the number or size of photosynthetic units (PSU), the observed differences in the acclimatory responses of Anabaena and Aphanizomenon can easily be addressed that way. Apart from the increased α , the maximum rate of O_2 production (P_{max}) of Anabaena also increased (Fig. 1a, c), corresponding with an increased PSU number (sensu Richardson et al., 1983). By contrast, the P_{max} of Aphanizomenon was lowered in response to decreased PPFR, whilst α (on a per-protein basis) increased to a greater extent than α in Anabaena (Fig. 1b, d), corresponding with an increased PSU size. However, a more comprehensive approach takes into account the relative occurrence of the two photosystems, PSI and PSII, the accessory pigments and the components of the electron transport system (Wilhelm, 1993), as discussed below. Nevertheless, as a result of these P/I curve responses, it is concluded that the light saturation value (I_k) of Anabaena remained relatively constant, whilstit decreased considerably in Aphanizomenon. Evidently, Aphanizomenon decreases its maximum rate of O₂ production when growing under light-limited conditions, whilst Anabaena maintains it at a high level. As a consequence, if the availability of light increases, Anabaena can quickly resume non-cyclic electron transport, thus enhancing fixation of CO₂ and, indirectly, of N₂.

The maximum efficiency of photosynthesis, or apparent quantum yield, is determined by the efficiencies of light harvesting and of photochemical conversion of absorbed light quanta, i.e. the product of the absorption cross-section and the maximum quantum yield ($\alpha = \sigma \times QY$; Tilzer, 1984). The two species not only increased their chlorophyll content with decreasing PPFR but also modulated their accessory pigments, resulting in an increased protein-specific optical absorption cross-section (σ_{prot}). Although σ_{prot} became comparable for the two species growing under LL, their patterns of chromatic adaptation (i.e. acclimation) differed. Despite a less pronounced increase in Chl, Anabaena eventually showed higher $\sigma_{\rm chl}$ values, which are most probably due to its increased phycocyanin-mediated absorption. The more pronounced increase in the Chl content of Aphanizomenon coincided with a striking rise in the absorption of light by phycoerythrin, suggesting a capacity for complementary chromatic adaptation (Tandeau de Marsac, 1977). As a consequence of the increased absorption due to phycoerythrin in Aphanizomenon, this species seems better equipped than Anabaena to absorb green light, normally the only remaining unabsorbed portion of photosynthetically-active radiation that occurs in dense communities or at large depth, i.e. in relative darkness.

Under LL conditions the calculated maximum quantum yield for O₂ production (QY) by Aphanizomenon was greater than that by Anabaena. In response to decreased PPFR, Aphanizomenon increased its α considerably but its σ_{prot} only moderately, whilst the opposite was true for Anabaena, which showed a moderate increase of α and a strong increase of $\sigma_{\rm prot}$. As a result, the QY of Aphanizomenon increased in contrast to that of Anabaena (see Table 2 for the calculated values). According to the fluorescence measurements, the photon yield (i.e. the quantum yield of non-cyclic electron transport) increased with decreasing PPFR but was still comparable for both species growing under ML. Unfortunately, the scatter in the data made it impossible to measure the photon yields in the LL cultures.

It is striking that the large increase in the chlorophyll (Chl) content of Aphanizomenon is contrasted by a more or less constant chlorophyllspecific optical absorption cross-section ($\sigma_{
m ehl}$) and even a decreased maximum rate of O₂ production (P_{max}) . This response clearly differs from that of Anabaena, in which increased Chl content is accompanied by an increase of both P_{max} and σ_{ehl} . This indicates a fairly well-balanced increase of both Chlcontaining photosystems together with a greater increase in the accessory pigments, in order to provide enhancement of the non-cyclic electron transport that underpins an increased P_{max} , and an increased σ_{chl} respectively. To explain this speciesspecific pattern, we postulate that Aphanizomenon, in addition to a qualitative change in its accessory pigments, invests its chlorophyll in PSI more than is the case in Anabaena.

An increase in the PSI:PSII ratio has been described for a number of growth limitations (Fujita *et al.*, 1994; Grossman *et al.*, 1994), and can be seen as a long-term acclimatory response when maintenance energy needs become relatively important. A relatively high PSI content is also advantageous after differentiation of a vegetative cell into a heterocyst, since PSI activity is the main provider of ATP and

reducing power, both of which are needed for N₂ fixation (Wolk, Ernst & Elhai, 1994). Besides the decreased maximum rate of O₂ production and relatively high steady-state N2 fixation activity in Aphanizomenon under LL conditions, other observations support our hypothesis of species-dependent changes in the PSI:PSII stoichiometry in response to light-limited conditions. Firstly, there is the higher maximum quantum yield for O₂ production in Aphanizomenon. A relatively high PSI content could increase the yield at PSII due to enhanced consumption of electrons already in the electron transport system, resulting in a higher concentration of open PSII reaction centres (Genty et al., 1989). Secondly, there is the increased rate of respiration in the dark in Aphanizomenon. It has been shown that an increase in cyclic electron transport, facilitated by the increase in PSI content, coincides with a concerted change in cyanobacterial respiration (Jeanjean et al., 1993; Hibino et al., 1996). Thirdly, there is in Aphanizomenon, a more pronounced decrease in photon yield during the dark period. Increased respiratory electron transport, resulting from an increased PSI:PSII ratio, will still be rate-limited by the terminal cytochrome c oxidase (Fujita et al., 1994), leading to an increasingly reduced plastoquinone pool during the dark period. This would cause a substantial lowering of the photon yield.

Competition

Surprisingly, Aphanizomenon was competitively displaced by Anabaena when growing together under light limitation. One reason for this unexpected result could be that the interactions between the two species were not determined solely by resource competition. If organisms affect each other only indirectly, via uptake of the limiting nutrient or via shading under light-limited conditions, the species able to grow at the lowest nutrient concentration or lowest light condition will competitively displace all other species (Tilman, 1982; Huisman & Weissing, 1994). However, direct interference between species might have influenced growth, and consequently, the outcome of competition. The changes in the specific growth rates of Anabaena and Aphanizomenon during the competition experiment suggest just such direct interaction. As a consequence of the increase in biomass during the experiments, light limitation became increasingly severe. The growth rate of Aphanizomenon surpassed that of Anabaena but abruptly ceased. The production of allelopathically-active compounds, whose effects correlate with cell density, could provide a plausible explanation for this pattern (Keating, 1977; Flores & Wolk, 1986; Bagchi, Chauhan & Marwah, 1993). Some strains of *Anabaena* are known to release such growth-inhibitors, and some of these compounds interfere with photosynthetic electron transport and

are presumed to be more inhibitory under lightlimited conditions (Von Elert & Jüttner, 1996). However, our strain of *Anabaena* failed to produce zones of growth inhibition in an agar-diffusion assay, following the method described by Von Elert & Jüttner (1997). Nevertheless, allelopathy cannot be excluded, since our strain was not axenic. Associated bacteria might have metabolized extracellular products to a greater extent in the agar-diffusion assay where cells are spatially fixed and non-photoautotrophs will accumulate, than in continuous cultures.

An alternative explanation concerns the light climate in the cultures. In contrast to homogeneously distributed PPFRs in the dilute monoculture experiments, the cells in the dense competition experiment experienced a continuously changing PPFR upon circulation in the vessel. Generally speaking, there is no doubt that a fluctuating PPFR affects the growth of phototrophs (see, for example, Ibelings et al. (1994); Schubert et al. (1995)). If Aphanizomenon is less able to withstand such a dynamic light regime than Anabaena, this could explain the outcome of the competition experiment. In this respect, the higher maximum rate of O2 production in Anabaena might be of importance, although the amplitude of the change in PPFR was rather low (at most 25 µmol photon $m^{-2} s^{-1}$). At this point it is unclear whether dynamic aspects of light supply and use played a role in the competitive growth studied here.

Ecological implications

The physiological evidence presented here might explain the distribution of Anabaena and Aphanizomenon in eutrophic shallow freshwater lakes, although the extent to which our results can be extrapolated to the genus level and/or to the natural occurrence of these organisms remains to be elucidated (see, for example, Janson, Carpenter & Bergman (1994); Pechar & Masojídek (1995)). However, according to a statistical analysis of field data from 80 Dutch lakes, Anabaena blooms coincide with higher underwater availabilities of light to a much greater extent than do Aphanizomenon blooms (Schreurs, 1992). This fits well with our monoculture results. For example, the broader absorption spectrum of Aphanizomenon (due to the presence of phycoerythrin in this strain), its higher maximum efficiency of photosynthesis, its relative high steadystate N₂ fixation activity and its slightly higher growth affinity for light under severely light-limited conditions, all characterize Aphanizomenon as a 'lowlight' or 'shade' species (an affinity strategist sensu Sommer (1989)). On the other hand, Anabaena can be characterized as a 'sun' species, at least in comparison to Aphanizomenon, based on, for example, the higher maximum rate of O2 production in Anabaena and its higher maximum specific growth

rate (a growth strategist sensu Sommer (1989)). Therefore, we expect Anabaena to become the dominant N₂-fixing organism upon the development of N-limited conditions in an aquatic system, unless light energy is the growth-limiting factor. In practice a light limitation arises in deep or high-density (i.e. relatively dark) systems. In such systems less quickly developing blooms of Aphanizomenon are to be expected. For the same growth-kinetical reasons one should expect a slow replacement of Anabaena by Aphanizomenon during the development of a bloom of diazotrophs, although our competition experiment shows otherwise. High-density systems and/or dynamic light regimes as present in turbid, shallow lakes might favour Anabaena at the cost of Aphanizomenon. In general terms, N2-fixing cyanobacteria can compete for light but, below a certain availability of light, no diazotroph will thrive, due to the higher energetic costs of N₂ fixation (De Nobel et al., 1997b). With the degradation of the standing crop and the mineralization of the organic nitrogen pool, non-diazotrophic and less light-demanding species will take over (Zevenboom & Mur, 1980; Reynolds & Bellinger, 1992).

ACKNOWLEDGEMENTS

The authors thank P.C.M. Boers, J. Huisman, B.W. Ibelings and two anonymous referees for their comments on the manuscript. This work was supported by the Institute for Inland Water Management and Waste Water Treatment (RIZA), Lelystad, The Netherlands.

REFERENCES

- Bagchi SN, Chauhan VS, Marwah JB. 1993. Effect of antibiotic from Oscillatoria laete-virens on growth, photosynthesis, and toxicity of Microcystis aeruginosa. Current Microbiology 26: 223-228.
- De Nobel WT, Huisman J, Snoep JL, Mur LR. 1997 a. Competition for phosphorus between the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. FEMS Microbiology Ecology 24: 259–267.
- De Nobel WT, Snoep JL, Westerhoff HV, Mur LR. 1997b. Interaction of nitrogen fixation and phosphorus limitation in *Aphanizomenon flos-aquae* (Cyanophyceae). *Journal of Phycology* 33: 794-799.
- **Droop MR. 1974.** The nutrient status of algal cells in continuous culture. *Journal of the Marine Biological Association of the United Kingdom* **54**: 825–855.
- **Dubinsky Z, Falkowski PG, Post AF, Van Hes UM. 1987.** A system for measuring phytoplankton photosynthesis in a defined light field with an oxygen electrode. *Journal of Plankton Research* **9**: 607–612.
- Flores E, Wolk CP. 1986. Production, by filamentous, nitrogenfixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. *Archives of Microbiology* 145: 215–219.
- Fujita Y, Murakami A, Aizawa K, Ohki K. 1994. Short-term and long-term adaptation of the photosynthetic apparatus: Homeostatic properties of thylakoids. In: Bryant DA, ed. *The Molecular Biology of Cyanobacteria*. Dordrecht, The Netherlands: Kluwer Academic Publishers, 677–692.
- Genty B, Briantais J-M, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. *Biochimica et Biophysica Acta* 990: 87–92.

- Grossman AR, Schaefer MR, Chiang GG, Collier JL. 1994. The responses of cyanobacteria to environmental conditions: Light and nutrients. In: Bryant DA, ed. *The Molecular Biology* of Cyanobacteria. Dordrecht: Kluwer Academic Publishers, 641–675.
- Henley WJ. 1993. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. *Journal of Phycology* 29: 729–739.
- Herbert D, Phipps PJ, Strange RE. 1971. Chemical analysis of microbial cells. *Methods in Microbiology* 5b: 209–344.
- Hibino T, Lee BH, Rai AK, Ishikawa H, Kojima H, Tawada M, Shimoyama H, Takabe T. 1996. Salt enhances photosystem I content and cyclic electron flow via NAD(P)H dehydrogenase in the halotolerant cyanobacterium *Aphanothece* halophytica. Australian Journal of Plant Physiology 23: 321–330.
- Hofstraat JW, Peeters JCH, Snel JFH, Geel C. 1994. Simple determination of photosynthetic efficiency and photoinhibition of *Dunaliella tertiolecta* by saturating pulse fluorescence measurements. *Marine Ecology Progress Series* 103: 187–196.
- Huisman J, Weissing FJ. 1994. Light-limited growth and competition for light in well-mixed aquatic environments: an elementary model. *Ecology* **75**: 507–520.
- **Ibelings BW, Kroon BMA, Mur LR. 1994.** Acclimation of photosystem II in a cyanobacterium and a eukaryotic green alga to high and fluctuating photosynthetic photon flux densities, simulating light regimes induced by mixing in lakes. *New Phytologist* **128**: 407–424.
- Janson S, Carpenter EJ, Bergman B. 1994. Fine structure and immunolocalisation of proteins in *Aphanizomenon* sp. from the Baltic Sea. *European Journal of Phycology* 29: 203–211.
- Jassby AD, Platt T. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. *Limnology and Oceanography* 21: 540–547.
- Jeanjean R, Matthijs HCP, Onana B, Havaux M, Joset F. 1993. Exposure of the cyanobacterium Synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiology 34: 1073–1079.
- Keating KI. 1977. Allelopathic influence on blue-green bloom sequence in a eutrophic lake. *Science* 196: 885–887.
- Kempers AJ, Kok CJ. 1989. Re-examination of the determination of ammonium as the indophenolblue complex using salicylate. *Analytica Chimica Acta* 221: 147–155.
- Kroon BMA, Latassa M, Ibelings B, Mur LR. 1992. The effect of dynamic light regimes on *Chlorella*. I. Pigments and cross sections. *Hydrobiologia* 238: 71–78.
- Monod J. 1942. Recherches sur la croissance des cultures bactériennes. Paris: Hermann.
- Mur LR, Schreurs H. 1995. Light as a selective factor in the distribution of phytoplankton species. Water Science and Technology 32: 25–34.
- Pechar L, Masojídek J. 1995. Colonial forms of the cyanobacterium Aphanizomenon flos-aquae represent protection against photosystem II photo-inactivation-fluorescence quenching analysis. Algological Studies 77: 37-43.
- **Porra RJ, Thompson WA, Kriedemann PE. 1989.** Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls *a* and *b* extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. *Biochimica et Biophysica Acta* **975**: 384–394.

- **Reynolds CS, Bellinger EG. 1992.** Patterns of abundance and dominance of the phytoplankton of Rostherne Mere, England: evidence from an 18-year data set. *Aquatic Sciences* **54**: 10–36.
- Richardson K, Beardall J, Raven JA. 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytologist 93: 157–191.
- Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignment, strain histories and properties of pure cultures of cyanobacteria. *Journal of General Microbiology* 111: 1–61.
- Roijackers RMM, Joosten AMT. 1996. The trophic state of shallow lakes in The Netherlands. Netherlands Journal of Aquatic Ecology 30: 219–226.
- Schreiber U, Schliwa U, Bilger B. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. *Photosynthesis Research* 10: 51–62.
- Schreurs H. 1992. Cyanobacterial dominance. Relations to eutrophication and lake morphology. Ph.D. thesis, University of Amsterdam, The Netherlands.
- Schubert H, Matthijs HCP, Mur LR, Schiewer U. 1995. Blooming of cyanobacteria in turbulent water with steep light gradients: The effect of intermittent light and dark periods on the oxygen evolution capacity of *Synechocystis* sp. PCC 6803. *FEMS Microbiology Ecology* 18: 237–245.
- Sommer U. 1989. The role of competition for resources in phytoplankton succession. In: Sommer U, ed. *Phytoplankton Ecology. Succession in Plankton Communities*. Berlin: Springer-Verlag, 57–106.
- Tandeau de Marsac N. 1977. Occurrence and nature of chromatic adaptation in cyanobacteria. *Journal of Bacteriology* 130: 82–91.
- Tilman D. 1982. Resource competition and community structure. Princeton, NJ, USA: Princeton University Press.
- **Tilzer MM. 1984.** The quantum yield as a fundamental parameter controlling vertical photosynthetic profiles of phytoplankton in Lake Constance. *Archiv für Hydrobiologie* **69** (Supplement): 169–198.
- Van Liere L, Loogman JG, Mur LR. 1978. Measuring lightirradiance in cultures of phototrophic micro-organisms. FEMS Microbiology Letters 3: 161–164.
- Von Elert E, Jüttner F. 1996. Factors influencing the allelopathic activity of the cyanobacterium *Trichormus doliolum*. *Phycologia* 35 (6 Supplement): 68–73.
- Von Elert E, Jüttner F. 1997. Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by *Trichormus doliolum* (Cyanobacteria). *Limnology and Ocean*ography 42. (In press.)
- Wallström K, Johansson S, Larsson U. 1992. Effects of nutrient enrichment on plankontic blue-green algae in the Baltic Sea. Acta Phytogeographica Suecica 78: 25–31.
- Wilhelm C. 1993. Some critical remarks on the suitability of the concept of the photosynthetic unit in photosynthesis research and phytoplankton ecology. *Botanica Acta* 106: 287–293.
- Wolk CP, Ernst A, Elhai J. 1994. Heterocyst metabolism and development. In: Bryant DA, ed. *The Molecular Biology of Cyanobacteria*. Dordrecht, The Netherlands: Kluwer Academic Publishers, 769–823.
- **Zevenboom W, Mur LR. 1980.** N₂-fixing cyanobacteria: why they do not become dominant in Dutch, hypertrophic lakes. *Developments in Hydrobiology* **2**: 123–130.