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WAVELETS, VIBRATIONS AND SCALINGS

(CRM Monograph Series 9)

By Y M : 133 pp., US$29.00,  0 8218 0685 8

(American Mathematical Society, 1997).

GENERALIZED WAVELETS AND HYPERGROUPS

By K. T'  : 349 pp., £81.00,  0 90 5699 080 2

(Gordon and Breach, 1997).

These two books show the wide range of areas now lying within the scope of

wavelet analysis. Meyer discusses several deep results in function theory on Rn, where

the roots of wavelet analysis lie, while Trime' che describes extensions of wavelet

theory to a diverse range of abstract group-theoretic settings.

Before discussing the books, it might help to sketch the background of the theory

of wavelets. Modern work in wavelet analysis began with the study of the Continuous

Wavelet Transform (CWT). Let Ψ `L#(Rn), and assume that !Rn Ψ(x) dx¯ 0, and

that !¢

!
rΨ# (tξ )r# t−" dt¯ 1 for ξ1 0. In this last equality, Ψ# is the Fourier transform

of Ψ. The CWT of f `L#(Rn), using Ψ as the analysing wa�elet, is denoted by 7f

and is defined by

7f(a, b)¯&
Rn

f(t)
1

an
Ψ0t®b

a 1 dt, b `Rn, a" 0. (1)

In the integrand in (1), the analysing wavelet is translated by b `Rn and dilated by

a `R
+
. The CWT has an inversion formula:

f(x)¯&
¢

!

&
Rn

7f(a, b)
1

an
Ψ 0x®b

a 1 db
da

a
. (2)

The most celebrated results in wavelet theory—the ones which lend themselves most

readily to computations and applications—concern orthonormal wavelet bases. For

simplicity, we shall here restrict ourselves to R (although Meyer treats the case Rn as

well). If ψ `L#(R) generates a set ²2j/#ψ(2jx®k)´
j,k`Z that is an orthonormal basis of

L#(R), then this basis is called a wa�elet basis. Some of the most important wavelet

bases are the ones discovered by Meyer and Lemarie! , for which ψ belongs to the

Schwartz class 3(R), and the ones discovered by Daubechies, for which ψ belongs to

Cm

c
(R) for some m¯ 0, 1, 2,…. Let ψ

j,k
(x) denote 2−jψ(2−jx®k), and let © f,ψ

j,k
ªB

!R f(x)ψ
j,k

(x) dx. Then f `L#(R) can be expanded in the wavelet series

f(x)¯ 3
j,k`Z

© f,ψ
j,k

ªψ(2−j x®k). (3)

More important, the wavelet coefficients © f,ψ
j,k

ª are well-defined for f `Lp(R),

1! p!¢, as well as many other function spaces, and (3) remains valid. Similarly, for
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Ψ `3(Rn), the CWT in (1) remains well-defined over a wide range of function spaces.

We now turn to a more detailed description of Meyer’s book. The first half of the

book describes some of Meyer’s new results on wavelet-based characterizations of

local Ho$ lder exponents, and other quantities which Meyer calls scaling exponents. In

Chapters 1–3, Meyer discusses the calculation of the local Ho$ lder exponent and of a

new type of scaling exponent. A function f(x) on Rn is called Lipα at x
!

if there is

a constant K" 0 and a polynomial p
x
!

(x) of degree :α9 such that r f(x)®p
x
!

(x)r%
K rx®x

!
rα. The local HoX lder exponent H( f ;x

!
) of a function f at x

!
is defined by

H( f ;x
!
)¯ sup²α : f is Lipα at x

!
´ ; the new scaling exponent β( f ;x

!
) is defined by

β( f ;x
!
)¯ sup²s `R : f `Γs(x

!
)´, where Γs(x

!
)¯5

s«`R Cs,s«
x
!

. Here, each Cs,s«
x
!

is one of

the two-microlocal spaces used in the study of non-linear PDEs. Meyer shows that

these scaling exponents can be computed either from size estimates on the values of a

CWT of f or from size estimates on its wavelet coefficients. He also shows that the

computation of H( f ;x
!
) from such size estimates requires an additional condition.

Namely, that f is a continuous function satisfying r f(x­y)®f(x)r%ω(ryr), where

ω : [0,¢)! [0,¢) is a continuous increasing function for which ω(h)¯O((log 1}h)−m)

for some m& 1.

The book concludes with two chapters that describe a new type of wavelet bases.

The elements of these bases have their supports and the supports of their Fourier

transforms essentially concentrated in rectangles that partition the time-frequency

plane in a manner which provides a much finer division near the zero-frequency axis

than is the case for standard wavelet bases. These new wavelet bases provide

convergent wavelet expansions—not available with other wavelet bases—for the

functions rxrγ when 0! γ! 1. Meyer also uses them to characterize the spaces

SγB ² f : f continuous and Lipγ and r f(x)r%C ´ using size estimates on wavelet

coefficients. These results are a perfect illustration of the flexibility and power of

wavelet analysis : the ability it pro�ides to custom design new wa�elet bases that are

better adapted to the problem at hand.

In addition to these general theoretical results, Meyer’s book is also sprinkled

throughout with a fascinating collection of examples and counter-examples. For

instance, in Chapter 1, Meyer carefully describes the construction of the Bolzano

function: a fractal function that for each x
!
` [0, 1] has a cusp singularity at x

!
.

Meyer’s book is suitable for professional researchers in function theory, or as a

text for an advanced graduate seminar. It contains no exercises, but Meyer writes in

a compressed yet lucid style which invites the reader’s participation.

While Meyer’s book describes some deep results in a well-established body of

work, Trime' che’s book is concerned with providing the foundations for building a

generalized wavelet analysis suited to a variety of group-theoretic settings. He

describes numerwous generalizations of the CWT within group-theoretic settings, such

as hypergroups, Gelfand pairs and semisimple Lie groups. Besides making use of

generalized Fourier transforms, Trime' che also examines generalized Radon trans-

forms on hypergroups and their inversion formulas via generalized wavelets.

Rather than describing all of the various group-theoretic settings considered by

Trime' che, we shall instead concentrate on one representative case: hypergroups. For

those who are interested in reading Trime' che’s book and who are not well-acquainted

with the theory of hypergroups, [1] and [2] are strongly recommended as prerequisites.

A hypergroup is a locally compact Hausdorff space X for which a notion of

convolution is defined, and for which there are generalized translation operators T
x

for each x `X. These translation operators act on compactly supported continuous
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functions f via T
x
f(y)¯ !

X
f(t) d(δ

x
nδ

y
)(t), where δ

x
, δ

y
are the Dirac measures at x, y.

In addition, there is a continuous involution x*x− from X onto itself, which satisfies

(x−)− ¯x for all x. For commutative hypergroups (where T
x
aT

y
¯T

y
aT

x
), as well

as for compact or discrete hypergroups, there is a Haar measure m that satisfies

!
X

T
x
f(y−) dm(y)¯ !

X
f(y) dm(y). There also exists a unique Plancherel measure π on

thedual spaceXW ofhermitian characters that satisfies !
X

f(x)g(x) dx¯ !
X
W fW(χ)gW (χ) dπ(χ).

Hypergroups include all locally compact abelian groups, and include the CheUbli–

Trime[ che hypergroups arising from certain singular Sturm–Liouville differential

operators.

In order to define a wavelet transform that generalizes (1), it is necessary to

generalize the translation and dilation of an analysing wavelet. For a hypergroup, the

translation operators serve as the generalizations of translation. Trime' che shows that,

for most of the important hypergroups, there is a function g `L#(X,m) that satisfies,

for some positive constant C
g
,

C
g
¯&

¢

!

rgW (aχ)r# a−" da

for almost all χ ` suppπ. He calls this function g a generalized wa�elet. Finally,

Trime' che defines the dilation of the wavelet g by a `R
+

as the function g
a

satisfying

g n
a
(χ)¯ gW (aχ) a.e. in suppπ. One problem for future research is, as Trime' che points

out, that closed formulas for g
a
are known for only a few specific cases. Based on the

dilations g
a
and the translations T

x
, Trime' che defines a generalized wa�elet transform

Φ
g
f, of f `L#(X,m), as

Φ
g
f(a, b)¯&

X

f(x)T
b
g
a
(x) dm(x), a `R

+
, b `X. (4)

He then proves an inversion formula

f(x)¯
1

C
g

&
¢

!

&
X

Φ
g
f(a, b)T

b
g
a
(x) dm(b)

da

a
(5)

under various hypotheses.

Having established the existence of a CWT and discussed its inversion for

hypergroups, Trime' che moves on to the same ideas in other group-theoretic settings.

He establishes the existence of a CWT and its inverse for Gelfand pairs, semisimple

Lie groups and Che!bli–Trime' che hypergroups.

Trime' che describes the foundations of a generalized wavelet analysis. What is

needed now, and perhaps will be supplied by future research, are applications of these

ideas. The classical CWT, defined in (1), provides a means of characterizing various

function-theoretic properties (Lipα, Lp-norm, scaling exponents), and has appli-

cations to operator theory. Are there analogous results in the group-theoretic settings

that Trime' che describes?

Trime' che’s book should be considered a guide to the literature, rather than a self-

contained reference. Many proofs of foundational results are omitted. References are

always supplied, but access to a good library is essential for those readers who are not

already well-acquainted with hypergroups, Lie groups or Gelfand pairs. Parts of the

book could serve as outlines for advanced graduate seminars, or the book could serve

as background for researchers in abstract harmonic analysis who are looking to

extend applications of wavelet theory.
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ERDO$ S ON GRAPHS: HIS LEGACY OF UNSOLVED PROBLEMS

By F C and R G : 142 pp., US$30.00,  1 56881 079 2

(A. K. Peters, 1998).

Paul Erdo$ s was one of the world’s greatest mathematicians. He worked in many

areas of mathematics, but the area in which he published about half of his papers,

about 700 altogether, was graph theory. The book under review is a very fitting

tribute. His peripatetic life-style, constantly on the move, and maintaining close

contact with mathematicians all over the world, his warmth and his sense of humour,

endeared him to very many, and earned him the affectionate sobriquet ‘Uncle Paul ’.

The present healthy state of graph theory owes much not just to his own numerous

discoveries, but to the enormous number of problems he posed—some with a cash

prize offered for the solution. Sometimes the problems were easy to solve; the £10 a

colleague and I shared was for solving one of these. But many led to the development

of new techniques for making substantial advances. And, of course, many remain

unsolved.

Fan Chung and Ron Graham, both excellent mathematicians, have gathered

together problems into six chapters : Ramsey theory; Extremal graph theory;

Colouring, packing and covering; Random graphs and graph enumeration;

Hypergraphs; and Infinite graphs.

Each chapter sets the scene well, giving a full introduction and the background to

the main areas of interest in the topic. Many of the main conjectures are included, not

just those due to Erdo$ s, and many of the main results, including recent ones, are also

given. Each chapter can be read independently of the others, and could serve as an

interesting introduction for a non-specialist.

It seems very likely that this book will serve to stimulate further activity. Some

of the problems will be solved, but many of the well-known problems seem likely to

remain unsolved for many years. An example is the Erdo$ s–Faber–Lova! sz conjecture

from 1972 that ‘any simple hypergraph H on n vertices has chromatic index at

most n ’. At first, Erdo$ s was sure it must be trivial, but quickly realized it was harder

than he thought. In the past twenty-five years, many mathematicians have tried to

prove it without much success.

The book has an interesting Preface and an opening section ‘Remembering Uncle

Paul ’, and concludes with three ‘Erdo$ s stories ’ written by Andrew Va! zsonyi, a boy-

hood friend of Erdo$ s. These almost seem to bring Erdo$ s back to life, and will

show those who never met Erdo$ s how much he was loved. There are so many ‘Erdo$ s
stories ’ that it is very likely that many will go unrecorded, which will be a shame since

mathematics lives as much through the people who do it as it does through the

theorems they prove.
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When I started as a mathematician, there was a fashion to criticize Erdo$ s, or the

‘Hungarian School of Mathematics ’, for concentrating on problems, in the belief that

he (or the school) did not develop mathematical theories, or did not concentrate on

mathematical structures. I always found it hard to see what the critics meant. Part of

Erdo$ s’ own response, taken from his last paper on problems, written shortly before

his death, was as follows.

Problems have always been an essential part of my mathematical life. A well

chosen problem can isolate an essential difficulty in a particular area,

serving as a benchmark against which progress in this area can be measured.

An innocent looking problem often gives no hint as to its true nature. It

might be like a ‘marshmallow’, serving as a tasty tidbit supplying a few

moments of fleeting enjoyment. Or it might be like an ‘acorn’, requiring

deep and subtle new insights from which a mighty oak can develop.

If anyone still seriously doubts Erdo$ s’ interest in mathematical structures, I suggest

that they read the chapter on random graphs and graphical enumeration.

This book is not just a wonderful tribute to Paul Erdo$ s. It contains so many

problems to stimulate the imagination of mathematicians as they browse through it,

that it will be a source of problems and an inspiration to others for many years to

come.

University of Reading A. J. W. H

ARITHMETICAL SIMILARITIES: PRIME DECOMPOSITION AND FINITE

GROUP THEORY

(Oxford Mathematical Monographs)

By N K : 274 pp., £55.00,  0 19 853598 8

(Clarendon Press, 1998).

The title of this book, Arithmetical similarities, refers to coincidences in the way

primes (that is, prime ideals) decompose in different extensions of a given algebraic

number field. For abelian extensions of number fields, such decompositions may be

understood using class field theory. This book examines the extent to which the

theory for abelian extensions remains valid for nonabelian extensions of algebraic

number fields. It develops the theory of several notions of equivalence of number

fields based on prime decompositions, including the apparently weak concept of

Kronecker equivalence of number fields introduced by Jehne, and also the much

stronger notion of arithmetical equivalence. These concepts may be formulated in

terms of certain properties of Galois groups, and many of the results in the book

involve a nontrivial interplay between group theory and algebraic number theory.

The results reported in the book were proved by a joint effort of number theorists

and group theorists, and the author is to be congratulated on providing this very

accessible account.

The Kronecker set D(K rk) of an algebraic extension K rk of number fields is

defined as the set of all primes p of k for which there exists a prime 0 of K lying over

p having residue degree 1. Two finite extensions L and K of k are said to be Kronecker
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equi�alent over k if their Kronecker sets D(L rk) and D(K rk) differ by a finite number

of primes. The stronger notion of arithmetical equivalence is defined in terms of the

decomposition types A
Krk

(p) in K of primes p of k : A
Krk

(p)¯ ( f
"
,… , f

r
) is the sequence

in non-decreasing order of the residue degrees f
i
¯ f(0

i
r p) of all primes 0

i
in K lying

above p. Two finite extensions L rk and K rk are said to be arithmetically equi�alent

over k if A
Lrk

(p)¯A
Krk

(p) for all but a finite number of primes p of k. This is

equivalent to having the same zeta function. Each of these concepts admits an

equivalent group theoretic formulation. If N rk is a Galois extension containing L

and K, G¯G(N rk) is the Galois group of N rk, and U¯G(N rL), V¯G(N rK ), then

L and K are Kronecker equivalent, or arithmetically equivalent, over k, if and only

if the transitive permutation characters for G induced by the subgroups U and V have

the same zeros, or are equal, respectively.

Several chapters of the book explore these notions of equivalence, using both

number theoretic and group theoretic methods. For example, the Kronecker

equivalence class + corresponding to a finite extension K rk may be infinite. This is

the case whenever either K rk has a nontrivial automorphism of odd order or of order

8, or K rk has a subgroup of automorphisms isomorphic to the quaternion group Q
)
.

On the other hand, it is possible for + to consist solely of conjugates of the field K,

and in this case + is called Kroneckerian. It turns out that every quadratic extension

is Kroneckerian. Jehne began this study of quadratic extensions in 1977, and reduced

the proof that they are Kroneckerian to a problem concerning maximal subgroups of

finite nonabelian simple groups. Several mathematicians, including Klingen, Brandl

and Saxl, made contributions culminating in a complete proof in 1986 which required

the full force of the finite simple group classification.

The book begins with a review of the basic theory of prime decompositions in

algebraic number field extensions, and of certain associated actions of the Galois

groups. It contains sufficient background in both number theory and group theory to

be accessible to mathematicians and graduate students with an interest in either area.

The final chapter gives a very useful discussion of several ‘generalisations and

refinements of the theory developed in the preceding chapters, as well as […] results

from related areas which use the same methods or lead to similar group theoretic

problems’. It may be regarded as a guide to the literature, and provides numerous

suggestions for further work.

University of Western Australia C E. P
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TOPICS IN CLASSICAL AUTOMORPHIC FORMS

(Graduate Studies in Mathematics 17)

By H I : 259 pp., US$39.00,

 0 8218 0777 3 (American Mathematical Society, 1997).

NON-VANISHING OF L-FUNCTIONS AND APPLICATIONS

(Progress in Mathematics 157)

By M. R M and V. K M : 196 pp., SFr.68.00,

 3 7643 5801 7 (Birkha$ user, 1997).

SPECTRAL THEORY OF THE RIEMANN ZETA-FUNCTION

(Cambridge Tracts in Mathematics 127)

By Y M : 228 pp., £29.95,  0 521 44520 5

(Cambridge University Press, 1997).

The three books under review together cover a lot of ground in the theory of

automorphic forms and L-functions. In order of increasing difficulty and special-

isation, the book by Iwaniec is an excellent graduate text, that by M. R. and V. K.

Murty is a research monograph awarded the Ferran Sunyer i Balaguer 1996 prize,

and that by Motohashi is a detailed and original treatment based on the author’s

research.

The book by Iwaniec provides the graduate student and the researcher wishing to

acquire the basics on automorphic forms with a beautifully written and self-contained

treatment of the classical modular and automorphic forms, Kloosterman sums,

Hecke operators, automorphic L-functions, cusp forms and Eisenstein series,

spherical functions, theta functions and convolution L-functions. The book is based

on Iwaniec’s lecture notes from a graduate course given in 1994}95 at Rutger’s

University, and it has obviously profited from being already tried and tested on

graduate students. The emphasis is on highlighting the interaction between different

ideas and methods. Some material towards the end of the book is presented in survey

form, but all the basic material is given in full detail.

The books by M. R. and V. K. Murty and by Motohashi are, by contrast, much

more specialised and directed at the researcher in number theory, although great

trouble has been taken in both cases to make the treatments self-contained. A

prerequisite for reading either of these two books, which are excellent research

monographs in their own right, should be the mastering of the book by Iwaniec.

There is some overlap of material between all the books, but it is only in Iwaniec’s

book that the basic theory is adequately covered with a broad perspective. This book

is a great deal more than an introductory text, however, as Iwaniec develops the

theory in a way not to be found in other texts. Of special note is his in-depth treatment

of theta functions and representations of quadratic forms. It is not possible in the

space allotted for this review to do justice to the value of this book. All three books
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can be seen as a tribute to the power of analytic methods in the arithmetic study of

L-functions. For example, deep results on the distribution of primes in arithmetic

progression are closely linked to non-vanishing properties of certain L-functions on

the line Re(s)¯ 1.

The book by M. R. and V. K. Murty is based on original papers by the authors,

and concerns results on the non-vanishing of a general L-function, with

consequences for Dirichlet L-functions, Artin L-functions and L-functions derived

from modular forms. These L-functions are of fundamental importance in the study

of prime numbers, in the theory of elliptic curves and in the theory of automorphic

functions, with many important results being linked to their non-vanishing properties.

The first chapters deal with the Artin L-functions and the Chebotarev density

theorem of which the prime number theorem is a special case. The authors then turn

to the study of the L-functions associated to modular forms relating the Sato–Tate

conjecture to the existence of the analytic continuation of certain L-functions to

Re(s)& 1 and their non-vanishing there. They also study conjectures concerning the

non-vanishing of the Dirichlet L-functions at s¯ "

#
by averaging techniques and

weighted sums. They show, for example, that for a positive proportion of Dirichlet

characters modulo a sufficiently large prime, the associated Dirichlet L-function does

not vanish in the interval "

#
% s! 1. They study the non-vanishing of quadratic twists

of modular L-functions, and show, for example, that for a holomorphic modular

newform of weight 2 there is a quadratic character such that the corresponding

twisted L-function does not vanish at the central critical point. This once again relies

on averaging techniques.

The book described above requires heavier machinery than that by Motohashi.

Yet, although the treatment of Motohashi claims to be elementary, this is a reflection

more of the analytic techniques used than of the depth of the methods developed.

Indeed, Motohashi’s book requires a more sophisticated appreciation of analytic

techniques than does that by M. R. and V. K. Murty. Motohashi deals with the

spectral theory of the Riemann zeta function, starting with a full exposition of the

spectral resolution of the non-Euclidean Laplacian and of trace formulae. The author

then turns to automorphic L-functions and their relation to explicit formulae for

power moments. The climax of the book is the treatment of the power moments of

the zeta values,

&T

!

rζ("
#
­iu)r#k du, k¯ 1, 2, 3,…,

especially that of the fourth power moment (k¯ 2). Motohashi shows how to derive

an explicit formula for the fourth power moment in terms of the values at s¯ "

#
of

Hecke L-functions attached to eigenforms, thus relating the zeta function to a whole

family of automorphic L-functions. The main point of the book is to bring out how

the Riemann zeta function alone links together families of more general L-functions.

The very technical nature of the book is considerably alleviated by the section of notes

at the end of each chapter where some historical and conceptual background is given.

Universite! des Sciences et Technologies de Lille P C



748  

LOCAL COHOMOLOGY: AN ALGEBRAIC INTRODUCTION WITH

GEOMETRIC APPLICATIONS

(Cambridge Studies in Advanced Mathematics 60)

By M. P. B and R. Y. S : 416 pp., £45.00 (US$69.95),

 0 521 37286 0 (Cambridge University Press, 1998).

Local cohomology grew out of Serre’s sheaf cohomology, introduced in the

mid-1950s, and was first systematised in R. Hartshorne’s notes of Grothendieck’s

1961 Harvard seminar (compare [1]). These notes consisted of a blend of algebraic

geometry and local algebra, and soon local cohomology grew to be an indispensable

tool in commutative algebra (and algebraic geometry), reflected in its appearance in

sketched form in chapters or appendices of texts in this field. The present book is the

first to be devoted solely to the topic and, as such, it fills a real gap, especially for

beginners. Fortunately for all, Brodmann and Sharp have produced an excellent

book: it is clearly, carefully and enthusiastically written; it covers all important

aspects and main uses of the subject ; and it gives a thorough and well-rounded

appreciation of the topic’s geometric and algebraic interrelationships. The book

contains plenty of exercises (many of which introduce the reader to a wealth of further

algebraic and geometric topics), with hints supplied for the more difficult questions.

In brief, then, the book opens with local cohomology functors (in the setting

of commutative algebra) being introduced as the right derived functors of torsion

functors ; the link with ideal transforms (and their derived functors) is established,

and the theory is shown to have geometric significance when applied to the ring of

regular functions on an irreducible affine variety over an algebraically closed field. In

fact, it is at this point that the reader is introduced to a basic running example, used

repeatedly to illustrate aspects of the material and to tie the discussion together,

namely Hartshorne’s famous example of an irreducible surface in #% that is not a

complete intersection. (Regrettably, this characterisation is not made completely

explicit in the book, as far as I could see; compare [2].)

The theory gets off the ground with a treatment of the Mayer–Vietoris sequence,

used as an inductive tool and put to work immediately in a vanishing theorem

involving arithmetic rank. Indeed, the fundamental vanishing theorems of

Grothendieck and of Lichtenbaum and Hartshorne are the subjects of the next few

chapters (with Serre’s affineness criterion as an application), as are finiteness and

Artinian behaviour (the former focusing on annihilator properties, due to Faltings).

The behaviour of local cohomology under base change, and links with C) ech com-

plexes and Koszul complexes, are also considered. The ‘affine’ theory is rounded off

with a treatment of Matlis duality and local duality, together with applications.

Of course, a graded theory of local cohomology is needed to treat applications in

projective geometry, and here this book is especially welcome in that it provides for

the first time a full, careful and detailed discussion of graded local cohomology,

together with a wealth of important applications, especially in geometry. First, the

basics are dealt with thoroughly, with the machinery of the first part reworked in the

graded case. Then applications are made to projective varieties and to Castelnuovo

regularity (and so to syzygies), especially to questions of bounding the regularity by

Hilbert coefficients. The final chapter treats in detail links with sheaf cohomology;

but before that, the penultimate two chapters give the book an up-to-the-minute zing
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with, respectively, a beautiful algebraic application—namely, L. T. Hoa’s theorem on

the asymptotic behaviour of reduction numbers of ideals—and beautiful geometric

applications to connectedness theorems, such as those of Grothendieck, Barth,

Fulton-Hansen and Faltings, and also Zariski’s Main Theorem.

Some of the closing chapters appear technically dense now and then, and an

earlier introduction of a geometric interpretation or of geometric language would

perhaps have leavened the treatment there a little. I also have a few regrets that there

was not a bit more discussion or commentary on certain topics. Thus the historical

background to ideal transforms in Nagata’s work on Hilbert’s 14th problem would

surely have been worth sketching, given the ring- and sheaf-theoretic treatment

already present in the book. Hartshorne’s example, and other examples discussed in

the book, involve glueing, and some explicit comment on the algebraic and geometric

aspects of this (here present just below the surface of the text) would have been of

interest. Finally, Hartshorne’s example is not formally connected in codimension one,

and so is not locally a complete intersection, by Hartshorne’s main theorem (see [2]).

This relationship, which underpins the example’s many pathologies as exhibited in the

book, is touched on repeatedly, but in a somewhat tangential way: a few lines of

discussion to draw all this together would have been useful.

However, compared to the cornucopia of superb interdisciplinary mathematics

treated superbly well in this book—which provides a vital and, some would say,

long-overdue service—these are minor cavils. I am sure that this will be a standard

text and reference book for years to come.

(Finally, given the book’s declared intention to demonstrate the crucial role

played by local cohomology, the more anarchic reader may take a perverse (or

perhaps childish) pleasure in replacing cohomological proofs by ones involving

proper (that is, old-fashioned) algebra—as in, for example, 19.2.7.)
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ABELIAN VARIETIES WITH COMPLEX MULTIPLICATION AND

MODULAR FUNCTIONS

(Princeton Mathematical Series 46)

By G S : 217 pp. US$55.00 (£39.50),  0 691 01656 9

(Princeton University Press, 1997).

The book under review encompasses both a reworking of a large portion of the

famous 1961 work of its author and Y. Taniyama [1], and a sequel treating progress

made since then in the subject. It is a beautifully written, self-contained and complete

treatment of a subject of which G. Shimura is a founding master, and is a

fundamental reference for any researcher or student of the arithmetic theory of

abelian varieties and modular functions, and in particular of its applications to class

field theory.
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Chapters I, II and III, and most of Chapter IV, consist of a considerably revised

version of corresponding material in [1] and cover the basic theory of abelian

varieties, complex multiplication (CM), reduction of abelian varieties modulo a prime

ideal, and the construction of certain class fields. For example, a main result of

Chapter IV concerns the construction of unramified class fields over CM-fields by

composing with the field of moduli of a polarised abelian variety with CM by the

reflex CM-field (Main Theorem 1, page 112). A second main result of Chapter IV uses

the points of finite order on such polarised abelian varieties to construct other class

fields over CM-fields (Main Theorem 2, page 118). In the elliptic curve case, these

important results reduce to an outcome of Kronecker’s theory, that the abelian

extensions of imaginary quadratic fields are generated by special values of certain

elliptic or elliptic modular functions with singular moduli.

In Chapter V, the zeta function of an abelian variety with CM is defined and

shown to be a product of Hecke L-functions. In Chapter VI, which uses many pub-

lications by the author post-dating [1], the discussion passes to families of polarised

abelian varieties and their ‘moduli varieties ’. A remarkably succinct account is given

of these varieties, of their relation to modular forms and functions, and of the

existence of canonical models for them. Another new feature of the present book is

the closing Chapter VII, which gives an extensive account of theta functions and the

projective embeddings of polarised abelian varieties that can be given using these

functions. Results of the author apply tools developed in the book to treat algebraic

relations between invariants defined, using periods of holomorphic 1-forms on

polarised abelian varieties with CM.

Other important modern treatments of the work of Shimura and of Shimura and

Taniyama have been developed using a less classical style than that favoured in the

book under review. Their impact in no way makes the present book outdated, as it

provides the fundamental tools and intuition behind all the modern approaches.
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MIXED MOTIVES

(Mathematical Surveys and Monographs 57)

By M L : 515 pp., US$109.00,  0 8218 0785 4

(American Mathematical Society, 1998).

This monograph is a systematic development of ideas which the author originally

outlined in a lecture delivered at a conference on algebraic K-theory and number

theory, held at Johns Hopkins University in April 1990. It is, in my opinion, a very

important book. This is because it lays the foundations for the modern (motivic)

approach to cohomological phenomena in algebraic and arithmetic geometry. I

remind the reader, by the way, that many of the most important results in this area

are cohomological (for example, Poincare! duality, Riemann–Roch theorems, the

Weil conjectures).
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Some years ago, Grothendieck suggested that algebraic geometers should search

for a ‘universal ’ cohomology theory for algebraic varieties. He suggested a menu of

plausible axioms for this cohomological motif, and explained how it should be related

to all the known cohomology theories (Betti, de Rham, Hodge, e! tale, crystalline, and

so on). The key point, said Grothendieck, was that this cohomology theory should

take its values not in the category of abelian groups, but rather in a more general

abelian category—the category of ‘mixed motives ’.

To cut a long story short, this category has yet to be constructed. Were it to be

constructed, one would have for each scheme S an abelian tensor category (with a

duality involution) of mixed motives over S, denoted by --
S
. For each smooth S-

scheme, there would be the motive of X, M(X ), in --
S
, having a Kunneth formula

for products, being connected with a rich cohomology theory related by Chern classes

to algebraic K-theory, connected to Chow groups, zeta functions and many other

important facets of algebraic geometry. Even in the presence of --
S

one could

perform much of its cohomological mathematics in the associated triangulated tensor

category given by the derived category, $-(S ), whose objects are made from

bounded complexes in --
S
.

What the author has done is to construct a category with all the anticipated

properties of $-(S ). In addition to establishing most of the desired properties for

his category, Levine also shows that it coincides with the very successful motivic

category of Voevodsky when S is the spectrum of a perfect field admitting the

resolution of singularities. (In this connection, we should recall that Spivakovsky, in

Toronto, has been claiming to be able to resolve singularities in characteristic p for

almost a decade.)

In conclusion, I have to admit that this volume will constitute difficult reading for

many. This is particularly true for those of us who long ago had to slog through

homological algebra and category theory done the old-fashioned way. However, I

believe that it is not serving the best interests of the next generation of mathematics

or mathematicians to ignore the motivic message. We must go out of our way to

ensure (here is where the impossibly hard work comes in) that our libraries acquire

books like this, and then (here is where further hard work comes in) we should

‘encourage’ our best PhD students to read them!

University of Southampton V S

CHARACTERS AND BLOCKS OF FINITE GROUPS

(London Mathematical Society Lecture Note Series 250)

By G N : 287 pp., £24.95 (US$39.95, LMS Members’ price £19.45),

 0 521 59513 4 (Cambridge University Press, 1998).

Modular representation theory deals with homomorphisms of a finite group G

into the general linear group GL(n,F ) of some degree n over a field F of prime

characteristic p (and over related rings). When p divides the order of G, there is a rich

interplay between representation theory and local group theory (the part of finite

group theory starting with Sylow’s theorems, and then moving on to Alperin’s fusion

theorem, control of transfer and criteria for the existence of normal p-complements).

One of the highlights of this interplay is Glauberman’s Z*-theorem, asserting that
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certain elements of order 2 in G are contained in the centre of G provided that G has

no normal subgroup of odd order. This result has played a major role in various

classification theorems for finite simple groups.

Navarro has put the Z*-theorem in the centre of his book. Assuming only a

modest background of ordinary (that is, complex) representation theory (all of which

can be found in [2]), and occasionally some basic facts about algebraic number fields,

the author proceeds quickly to R. Brauer’s three main theorems on blocks, which are

then applied to prove the Z*-theorem. Having achieved that, the author moves on to

other topics, like modular representations of p-solvable groups and of groups with a

Sylow p-subgroup of order p. These topics all demonstrate well the power of the

methods.

The author’s approach is quite classical ; but many of the original proofs have

been polished, and some new developments have been incorporated. (I myself have

sometimes used a similar approach to the subject in my lectures, following lecture

notes of Dade [1].) Of course, the material selected for the book covers only a small

part of modular representation theory. For example, vertices, sources and the Green

correspondence are not mentioned at all. (These tools might have been useful for the

chapter on groups with a cyclic Sylow p-subgroup.)

Since its beginnings in the pioneering work of R. Brauer about 50 years ago, the

subject has grown considerably, and now has interesting connections with areas like

topology, cohomology, number theory, algebraic geometry and coding theory. More

importantly, many of today’s conjectures (like Alperin’s weight conjecture and its

extensions by Dade, or Broue! ’s dreams about derived equivalent blocks) indicate

clearly that major parts of the theory are still waiting to be discovered.

Navarro’s book gives a good introduction to this exciting subject. I enjoyed

reading it, and I shall recommend it to my students.
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PROFINITE GROUPS

(London Mathematical Society Monographs N.S. 19)

By J S. W : 284 pp., £60.00,  0 19 850082 3

(Clarendon Press, 1998).

The idea of subsuming an infinite family of congruences into a single equation

over the p-adic integers goes back to Hensel at the beginning of this century; about

half-way through the century, mathematicians such as Weil began to systematise

problems about number fields by expressing them in terms of the absolute Galois

group. Thus profinite groups, and in particular their cohomology, have been a central

object of study for at least half a century. However, in the world of group theory they

received for a long time only sporadic attention.
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Recent years have seen an upsurge of activity in the group-theoretic study of

profinite groups, from diverse points of view: to the questions motivated by number

theory have been added many others which present themselves naturally to the eyes

of an algebraist. These include questions about global structure (for example,

describing the subgroups of a free profinite group), and questions about infinite

families of finite groups, which can sometimes be encapsulated in the properties of a

profinite group (such as the classification of finite p-groups of fixed coclass). The

subject is in a hearty growth phase, and is full of attractive and challenging problems.

Up to now there has, however, been no systematic and comprehensive text to which

one could refer the aspiring research student. The author of the book under review

has heroically stepped in to fill the gap.

The first four chapters (together with a Chapter 0) introduce profinite groups and

develop their main properties. The material is mostly quite elementary, and carefully

explained from first principles. More specialised topics occupy the later chapters. The

author warns that ‘ the pace accelerates gently ’, but the inexperienced reader need

have no qualms: everything is clearly spelled out, with meticulous attention to detail

and a resolute avoidance of hand-waving arguments (these are particularly tempting

in this subject, where many things are proved by considering the finite case and

‘taking inverse limits ’). This was a good decision; old hands will comfortably skim

over familiar material, while learners will be grateful for the author’s efforts.

However, this is much more than a book for beginners. For researchers, it will be

the standard reference on all the most important topics in profinite group theory,

most of which have not hitherto been systematically set down and developed in such

depth. This is especially true of the cohomology theory; with the chapters setting up

the necessary theory of profinite modules and completed group algebras, this occupies

nearly half the book. The author has put in a lot of work to present a self-contained

account which, while starting at the very beginning, culminates with the proofs of

deep results, such as Lazard’s theorem on the Poincare! duality of p-adic analytic pro-

p groups. (Anyone who has tried to follow Lazard’s original proof of this result will

appreciate the relative simplicity of Wilson’s approach.)

Other subjects covered in depth include free and projective groups, groups of finite

rank, and finitely presented groups, all topics of current research activity. The author

puts his own stamp on each of them; the reader familiar with more specialised books

such as [1] and [2] will find plenty of interest here, including the first appearance in

book form of Wilson’s own recent results on the Golod–Shafarevich inequality.

This is going to be an extremely useful book. It should be in every departmental

library; and anyone doing research on profinite groups, or in a related area, needs to

have it on the bookshelf.
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GROUPS ACTING ON HYPERBOLIC SPACES: HARMONIC ANALYSIS

AND NUMBER THEORY

(Springer Monographs in Mathematics)

By J$  E, F G and J M : 524 pp., £57.50,
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Among discrete subgroups of Lie groups, Kleinian groups (discrete subgroups of

PSL(2,#)) acting on hyperbolic space, and Fuchsian groups (discrete subgroups

of PSL(2,2)) acting on the hyperbolic plane, are of particular interest. Although

Kleinian and Fuchsian groups are closely related, there are a number of important

differences. Kleinian groups cannot be continuously deformed (by Mostow rigidity),

and the associated hyperbolic 3-manifolds do not carry a complex structure; on the

other hand, because of the higher dimensionality, Kleinian groups give rise to more

complicated and richer geometric and analytic phenomena. In the context of

harmonic analysis on symmetric spaces, Kleinian and Fuchsian groups also play a

special ro# le. While in the Fuchsian case there are already a number of treatments, the

book under review is the first monograph on the spectral theory of Kleinian groups,

including Selberg’s trace formula.

The study of Kleinian groups (or of Fuchsian groups) is particularly attractive

because it involves learning many diverse branches of mathematics. This may be

illustrated very well by listing the contents of the book under review. The first chapter

is about hyperbolic geometry (of hyperbolic 3-space). Different models are presented,

and also the point of view of Lie groups and symmetric spaces is considered. The

second chapter treats the basic theory of Kleinian groups, including classification of

parabolic elements and finiteness questions. Also discussed are Poincare! ’s theorem of

fundamental polyhedra and the question of volumes of hyperbolic 3-manifolds. The

third chapter is about automorphic functions. Poincare! series and Eisenstein series are

introduced, the Fourier expansion of Eisenstein series in cusps being fundamental for

this theory. The method of point-pair invariants is discussed, and an explicit formula

for the Selberg transform is deduced. Chapters 4–6 are the heart of the book. They

treat, following the lines of the already classical approach of Maass, Roelcke and

Selberg, the spectral theory of the Laplace operator for cofinite Kleinian groups which

culminates in Selberg’s trace formula. The resolvent kernel is of Hilbert–Schmidt type

only for cocompact Kleinian groups. The case of cofinite non-compact Kleinian

groups is a good bit more difficult. Their continuous spectrum is treated, as usual,

through the meromorphic continuation of Eisenstein series ; the authors follow Colin

de Verdie' re’s approach through pseudo-Laplacians. The theory of eigenpackets is

used (and explained) as well. As in the cocompact case, the discrete spectrum has

non-negative eigenvalues with finite multiplicities, but not much is known about the

size of discrete spectrum of cofinite non-compact Kleinian groups. A number of

applications of trace formula are proved, for instance the prime geodesic theorem and

the fact that the Selberg zeta function is an entire function of order 3. Chapter 7 and

Chapter 10 are about arithmetic Kleinian groups. Bianchi groups PSL(2,/) (in

Chapter 7) are the natural analogues of the modular group PSL(2,:) ; the authors

also discuss their interesting group theoretic structure. Chapter 10 contains a general

construction of arithmetic Kleinian groups. A list of all thirty-two Kleinian groups

which are Coxeter groups with four generators is given, some of them being non-

arithmetic. The subject treated in Chapter 8 could be called Kleinian modular forms.
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General results of the spectral theory of Kleinian groups are applied to the groups

PSL(2,/) (and their Eisenstein series). This technique has been very successful in

number theory. The authors obtain, among other results, an analogue of Kronecker’s

limit formula, results on non-vanishing of L-functions and, with the help of zeta

functions, Weyl’s asymptotic law on the distribution of eigenvalues. In Chapter 9 the

theory of (arithmetic) Kleinian groups is used to derive classical results on integral

binary Hermitian forms.

The book under review is very rich, very accessible, and most carefully written.

The text is enriched by many original approaches and applications, fruit of the

authors’ long experience with the subject. This valuable book will be exceedingly

useful to all who wish to learn the theory of Kleinian groups in connection with

harmonic analysis and number theory.

For the reader’s convenience, I have added below some references to recent

related literature.
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INTRODUCTION TO GEOMETRIC PROBABILITY

By D A. K and G-C R : 178 pp., £12.95 (US$19.95),

 0 521 59654 8 (Cambridge University Press, 1997).

Geometric probability theory begins, as does this book, with Buffon’s needle

problem. Few readers will need reminding that its solution says that, if a needle of

length L is dropped on a grid of parallel lines in a plane at distance L apart, then the

probability that it meets one of the lines is 2}π. From a modern perspective, this

answer depends on the existence of a measure on the family of lines in the plane which

is invariant under isometries.

This idea generalizes in several directions. The affine Grassmannian Graff(n,k)

consists of the family of all k-dimensional flats (affine subspaces) in n-dimensional

euclidean space Rn, endowed with its natural invariant measure λn

k
induced by the

group E
n

of isometries of Rn. If k& 1, then a k-flat meets a compact set K if and only

if it meets the convex hull of K ; thus it is natural to confine one’s attention to compact

convex sets. If K is such a set, then the measure of the k-flats which meet K is clearly

proportional to the mean (n®k)-volume of the projection of K on the (n®k)-

dimensional linear subspaces of Rn, and thus (in some sense) measures the (n®k)-

dimensional size of K. In one normalization, this is the quermassintegral W
k
(K ) of

K introduced by Minkowski (the definition accounts for the name). Nowadays, an

alternative normalization introduced by the reviewer, giving the intrinsic �olume

V
n−k

(K ), is often preferred; one advantage is that V
r
(K ) is independent of the

dimension of the ambient space of K.

The intrinsic volumes V
r
(denoted in this book by µ

r
) are �aluations, in that, if K

"



756  

and K
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are compact convex sets whose union is also convex, then V
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convex sets which are isometry invariant, and continuous with respect to the

Hausdorff metric ), given by
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with B the unit ball. This characterization leads directly to many formulae of integral
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m
, can be extended to the family Polycon(n) of polyconvex

sets, namely finite unions of compact convex sets in Rn. Not all valuations satisfy

the inclusion–exclusion principle, but continuous valuations do (since the inclusion–

exclusion principle holds for valuations on polytopes). Thus many results in the

book are stated for Polycon(n).

At the core of the book lies a new proof by the first author of Hadwiger’s theorem,

which in turn follows from his new characterization of volume. This is embedded in

a fine brief introduction to geometric probability in general. The initial approach is

unusual—through parallelotopes—which helps gradually to reinforce the reader’s

intuition, since the intrinsic volumes have obvious meanings here. There is then a

diversion through the analogous valuations on simplicial complexes, a discussion of

Polycon(n), and a survey of invariant measures on Grassmannians. Finally, after the

kinematic formulae are proved, the corresponding theory on the sphere is considered.

To date, in fact, there are more questions than answers here, and the analogue to

Hadwiger’s characterization theorem is open for spheres of dimension three or more.

Let me end by giving an enthusiastic welcome to this inexpensive little book,

which will surely interest more than geometers alone.

University College, London P MM

THEORY OF DEGREES WITH APPLICATIONS TO BIFURCATIONS AND

DIFFERENTIAL EQUATIONS

(Canadian Mathematical Society Series of Monographs and Advanced Texts)

By W K and J W : 374 pp., £70.00,

 0 471 15740 6 (John Wiley & Sons, 1997).

For an open bounded set ΩZ2n and a continuous function f :Ω7 !2n, the

Brouwer degree of f relative to Ω (and 0) is defined provided that f(x)1 0 for all

x ` ¦Ω. Roughly, it is an algebraic count of the number of solutions inside Ω of the

equation f(x)¯ 0. Along with its extension to Leray–Schauder degree in infinite

dimensional spaces, it provides a well-known tool in the study of nonlinear problems.

In particular, it enables many problems in ordinary and partial differential equations
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(ODEs and PDEs) to be reduced to the (often difficult) problem of determining

a priori bounds for (a family of ) solutions.

The book under review aims to provide a unified treatment of the ‘classical ’

theory (as mentioned above) and the equivariant degree theory for maps that are

invariant under some group action, for example S ", which is at an early stage of

development. The definition in this text is different from but related to the definition

given by Ize, Massabo and Vignoli in several papers from 1989 to 1993; see, for

example, [6].

The authors ‘ intend to address those readers who are applications oriented and

have basic knowledge of functional analysis, general topology, and differential

equations’. However, the reader is expected to know rather more than this, as

knowledge of differential geometry (manifolds, vector bundles, homotopy theory)

and algebra (Lie groups and their representations) is essential in the study of

equivariant degree, though much less is needed for the ‘classical ’ theory. What is used

is clearly stated either in Chapter 1 or as needed.

Chapters 2–4 cover Brouwer degree for continuous maps f in 2n, its extension

to the Leray–Schauder degree for maps of the form f¯ I®F where F is compact,

in infinite dimensional spaces, and to ‘Nussbaum–Sadovskii ’ degree when F is

condensing. First, the authors present the normalization, additivity and homotopy

properties as axioms, and further properties are deduced from these. Uniqueness of

the degree under these axioms is not discussed, but reference could have been made

to the literature on this, for example, the paper by Amann and Weiss [1]. Brouwer

degree is then constructed by the well-known analytic approach as may be found

in well-known books by Schwartz, Lloyd, Deimling and Zeidler, and elsewhere.

Another recent book, by Fonseca and Gangbo [4], also gives the classical theory, but

has an entirely different second part dealing with functions in Sobolev spaces. A

lengthy version of the proof of Borsuk’s theorem due to Gromes [5] (who is not cited)

is given; a succinct version is given in Deimling’s book [2].

Leray–Schauder degree is treated in the standard way by using the Schauder

approximation of a compact map by a finite dimensional map. (The step of going

from 2n to a finite dimensional vector space is left to the reader.) ‘Nussbaum–

Sadovskii ’ degree is handled by means of a bijection theorem proving an equivalence

between the compact and condensing cases. The degree is extended to unbounded sets

Ω when f −"(0) is compact. Applications are given to some ODEs involving terms that

may have quadratic growth, and to ODEs with nonlinear boundary conditions, and

to existence of periodic solutions of some neutral functional differential equations

(FDEs). Chapter 5 proves a nice account of local and global bifurcation results

(Krasnosel’skii, Rabinowitz), utilizing the concept of complementing maps. (Some

mention of related work by Fitzpatrick, Ize, Massabo, Pejsachowicz, Vignoli and

others could have been usefully added here ; see, for example, [3].)

Chapters 6–8 constitute the main new feature of this text, the equivariant degree

theory, to which the authors have made major contributions. Chapter 6 treats S "-

equivariant degree. This is a sequence of integers, each integer measuring orbits of a

certain type. Necessary results from representation theory are reviewed before the

definition is given via the idea of an equivariant normal approximation of a map (of

the previously studied types). It is shown that this degree theory satisfies the standard

properties of the earlier degree theories. Applications are given in Chapter 7 to global

Hopf bifurcation for some neutral FDEs, including a problem of a lossless trans-

mission line. In the final chapter, the authors define G-degree, the equivariant
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degree theory based on the equivariant fixed point index due to Dold. (Definition

8.3.3 contains a misprint.)

Generally, the book is well presented, but occasionally formulae are badly split,

and use of the definite article is poor. There are a number of cases of wrong cross-

references, which is a problem that we do not expect in the days of LATEX. Also,

some misprints have led to problems: for example, Exercises 2.2.6 and 4.3.1 are

wrong as stated. The exercises are often extensions of the theory to other contexts,

and references to the literature would be useful. The end-of-chapter bibliographical

notes are often rather general, and more specific attributions would have enhanced

the book.

Because of the technical nature of some of the material, a symbol index is sorely

missed. It is not possible to be a grasshopper in reading this book.

The book under review is a very useful addition to the literature, especially

because of the part on equivariant degree theory. It is an advanced work, and readers

are expected to have wide knowledge and be able to fill gaps by themselves.

References

1. H. A and S. A. W, ‘On the uniqueness of the topological degree’, Math. Z. 130 (1973) 39–54.
2. K. D, Nonlinear functional analysis (Springer, Berlin, 1985).
3. P. M. F and J. P, ‘Orientation and the Leray–Schauder theory for fully

nonlinear elliptic boundary value problems’, Mem. Amer. Math. Soc. 101 (1993).
4. I. F and W. G, Degree theory in analysis and applications (Oxford Scientific Publications,

1995).
5. W. G, ‘Ein einfacher Beweis des Satzes von Borsuk’, Math. Z. 178 (1981) 399–400.
6. J. I, I. M and A. V, ‘Degree theory for equivariant maps: the general S"-action’, Mem.

Amer. Math. Soc. 481 (1992).

University of Glasgow J W

ALGORITHMIC GEOMETRY

By J-D B and M Y (translated by H!
B$ ) : 519 pp., £24.95 (US$39.95),  0 521 56529 4

(Cambridge University Press, 1998).

In very many practical applications of processing data by computer, such as

graphics, medical imaging (CAT and NMR scans) and computer-aided design

(CAD), the efficient solution of a geometric problem lies at the heart of the technique.

This book is devoted to the theory of algorithms to solve such problems, much of

which is comparatively recent. Before going into what the book does cover, let me

first say what it does not. The reader will not find here actual implementations

of algorithms. And those problems which are soluble only by brute force are

omitted—unfortunately, these include some important topics such as determination

of volume, to give only one instance. In other words, we have here the theory of

geometric algorithms which are polynomial in their input data; in this context, it is

natural to take the dimension as fixed.

The book is split into five parts, each further subdivided into chapters. The first,

on algorithmic tools, provides a general introduction which is of interest beyond

geometry. It treats the basic notions of complexity of algorithms and problems,

optimality and (polynomial) equivalence, the theory of data structures, deterministic

methods, and various randomized techniques. The last topic needs a little more
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explanation. In implementing some algorithms, one may make random choices at

various stages. Surprisingly, perhaps, such methods are often very efficient, and

indeed occasionally optimal. As one might expect, however, the illustrations of the

algorithms are mainly applications to geometry.

The remaining parts fall into a common pattern. There is an initial chapter on

the mathematical background. However, any general abstract theory here is covered

fairly rapidly; only those aspects of the subject with future applications to algorithms

in mind are treated in detail. So, to give just one example, in the chapter on polytopes

the reviewer’s Upper Bound Theorem is dealt with in a qualitative way: the maximum

number of facets of d-polytopes with n vertices is O(n:d/#9). Of course, this is

appropriate, since even an exact bound fed into one part of the complexity analysis

of an algorithm will usually result only in an order estimate for the algorithm as a

whole.

This background chapter is then followed by two (except for convex hulls, where

there are three) chapters on algorithms as applied to the subject of the part. Although

the authors claim in the preface that they develop the theory as far as possible in a

dimensionally independent way, in practice these applications are mostly to small

dimensional problems. Indeed, some of the planar algorithms have no analogues in

higher dimensions. The main exceptions concern convex hull algorithms and linear

programming, both of which are treated in full generality.

Let me end by briefly listing the topics discussed in the four parts. The initial

subject of convex hulls (of a given finite set of points) is self-explanatory; various

iterative methods of finding the convex hull (on-line, dynamic and by shelling) are

explored in depth. Randomized linear programming also occurs here. Triangulations

are those of a finite point-set with vertices in the set ; the algorithms here are 2- and

3-dimensional. Arrangements are of several kinds: hyperplanes in space, line

segments in the plane, and triangles in ordinary space. Voronoi diagrams are

partitions of space determined by proximity to finitely many points ; the metric here

need not be euclidean, and the space is even allowed to be hyperbolic. Associated with

a Voronoi diagram is a ‘dual ’ Delaunay triangulation, which is also of some

importance.

The book is well written (and the translation is, with rare exceptions, felicitous),

covers a wealth of material, is copiously illustrated, and has a comprehensive

bibliography. Especially in view of its modest price, the book would be a welcome

addition to the shelves of anyone interested in algorithmic geometry.

University College, London P MM

PROJECTIVE GEOMETRIES OVER FINITE FIELDS

By J. W. P. H : 555 pp., £65.00,  0 19 850295 8

(Clarendon Press, 1998).

Seven years ago, James Hirschfeld completed his ambitious project of giving a

self-contained and comprehensive account of projective spaces over finite fields. The

three volumes comprising this work, all in the Oxford Mathematical Monographs

Series, are Projecti�e geometries o�er finite fields (1979), Finite projecti�e spaces of

three dimensions (1986) and General Galois geometries (1991). The first volume

provides introductory material on finite fields and on general projective spaces, before
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studying the line and the plane in detail. The second volume is devoted to spaces of

three dimensions, and the third, written jointly with J. A. Thas, to spaces of general

dimension.

These monographs have become established as the standard reference work for

researchers in finite geometry. They are also invaluable for researchers in closely

related areas such as coding theory, group theory and statistical designs. In coding

theory in particular, it is becoming increasingly recognised that many problems may

be posed most naturally in a geometrical setting, and that many optimal codes are

equivalent to natural structures in finite projective spaces.

Dr Hirschfeld has now written a second edition of the first volume of the trilogy.

This is, in fact, a complete reworking, taking account of many new results proved

since 1979. It is much more attractively typeset than the first edition, and so better

complements the second and third volumes. The number of references has increased

from around 800 to over 3000. As before, the volume is concisely but clearly written,

and contains a wealth of interesting material.

The book is largely concerned with combinatorial properties of subsets of

projective spaces, but other recurring themes are properties and characterisations of

algebraic varieties and group-theoretical properties of configurations.

The first chapter is a survey of relevant results about finite fields. The second

chapter introduces the projective spaces PG(n, q) and algebraic varieties, as well as

some connections with groups and codes. The next three chapters are concerned with

fundamental general properties of PG(n, q). After a short chapter on the projective

line PG(1, q), the remainder of the book, a further eight chapters, gives a detailed

study of the plane PG(2, q), covering such topics as conics, quadrics, ovals, arcs,

cubic curves and blocking sets. The chapters on arcs and on blocking sets are the most

heavily revised from the first edition, so as to include important new results. The final

chapter gives a detailed analysis of each of the planes for q% 13.

The author is not planning second editions of the successor volumes, and so the

new trilogy, comprising the 1998, 1986 and 1991 volumes, looks set to be the standard

reference work on projective spaces over finite fields for many years to come. The

publishers are currently offering the three-volume set at just over half-price. Snap

it up!

University of Salford R H

HYPERBOLIC MANIFOLDS AND KLEINIAN GROUPS

(Oxford Mathematical Monographs)

By K M and M T : 253 pp., £60.00,

 0 19 850062 9 (Clarendon Press, 1998).

The study of Kleinian groups and 3-dimensional hyperbolic manifolds lies at the

intersection of differential geometry, 3-manifold topology, complex analysis, number

theory, dynamics and combinatorial group theory. The field was born around the

turn of the century in the work of Poincare! , and has undergone two major and

distinct revolutions, one in the 1960s with the complex analytic work of Ahlfors and

Bers, and one in the 1970s and 1980s with the geometric work of Thurston and the

dynamical work of Sullivan. One of the most interesting aspects of the field is the
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interplay between the action of a Kleinian group on the Riemann sphere and its

action on hyperbolic 3-space.

To date, a number of books exploring various facets of Kleinian groups have

been written at various points over the life of the field, including works by Ford [3],

Lehner [6], Kra [4], Beardon [1], Krushkal, Apanasov and Gusevskii [5], Maskit [7],

Thurston [10], Ratcliffe [8] and Benedetti and Petronio [2], as well as the lecture notes

of Thurston [9].

The purpose of the book under review is to give an overview of the study of

Kleinian groups and hyperbolic 3-manifolds. It covers the basics of the action of

Kleinian groups on the Riemann sphere and on hyperbolic 3-space, including a

chapter on ends of hyperbolic 3-manifolds ; a detailed discussion of algebraic and

geometric convergence and of deformation spaces of Kleinian groups; and finiteness

theorems for Kleinian groups. One feature of the book that I found particularly nice

is that the authors provide sketches of the proofs of the major results, such as

the Ahlfors finiteness theorem, the Sullivan rigidity theorem, and the double limit

and uniformization theorems of Thurston. They convey an enormous amount of

information efficiently. Overall, the book is well written and well organized. It is an

expanded and revised version of the authors’ 1993 book, and has been reasonably

well translated from the Japanese. I believe that this book will be a useful and

valuable reference for researchers in the field for years to come.

There is one point of concern that I have, which arises primarily because the book

is a survey of existing results and does not go into great depth on all topics. On the

whole, the authors do not do a thorough job of providing references to the sources

in the published literature in which the results they discuss first appear. I would have

found more detailed referencing of results to be useful.
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FIBREWISE HOMOTOPY THEORY

(Springer Monographs in Mathematics)

By M C and I J : 341 pp., £49.50,  1 85233 014 7

(Springer, 1998).

The category of spaces over a fixed space B is quite old. The term adopted here

is fibrewise space, which does not imply any uniformity of the fibres. The aim of this
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monograph is to present an expository survey of fibrewise homotopy theory as it

stands today.

The book is in two parts. Part I consists largely of definitions and elementary

results that set up the basic theory. Chapter 1 adapts concepts from ordinary

homotopy theory, such as products, cofibrations, homotopy and mapping spaces, to

the fibrewise context. For example, a finite covering space is renamed a fibrewise

compact discrete space. The appropriate definitions are not always obvious, and need

some care; for instance, a fibrewise constant map X!Y is not the same as a map that

is constant on each fibre.

Chapter 2 treats the pointed (based) theory. A pointed fibrewise space is a space

X over B with a given section; unlike ordinary homotopy theory, its behaviour can

vary greatly with the choice of section. Topics include fibrewise versions of smash

products, Puppe sequences, the Freudenthal suspension theorem and Whitehead

products.

Chapter 3 covers Lusternik–Schnirelmann category and variants, and continues

with the fibrewise James construction. The question of which sphere bundles support

fibrewise H-space structures is discussed, with concrete examples.

Part II is billed as an introduction to the stable theory, and contains four chapters.

Chapter 1 sets up the fibrewise (graded) stable homotopy category. The Euler class

γ(ξ ) of a vector bundle ξ is the inclusion B¬S !! ξ+

B
.

Chapter 2 treats fixed point theory, following Dold. It begins by developing the

machinery of Euclidean and absolute neighbourhood retracts (ENRs and ANRs).

Given a manifold M and a suitable map f :U!M, where U is open in M, the

Lefschetz–Hopf index Lh
B
( f,U ) is a stable map B¬S !!U

+B
. This reduces to the

transfer B
+
!M

+
when f is the identity. These ideas are used to prove the Adams

Conjecture, following Becker–Gottlieb. The main ingredient is finding a p-local stable

equivalence ξ+

B
! (ψlξ )+

B
for any virtual complex vector bundle ξ over B, where p does

not divide l. This is easy when ξ is a line bundle or a sum of line bundles.

The next topic is fibrewise duality. The dual of X is an object X* equipped with

maps i :B¬S !!X*gX and e :X*gX!B¬S ! that satisfy axioms familiar from

linear algebra. This generalizes Spanier–Whitehead duality. The object X is invertible

if i and e are isomorphisms. When B is a point, this allows only spheres ; but in

general, X can be any sphere bundle over B and the definition has real content.

Chapter 3 treats manifolds. A fibrewise manifold is modelled on open sets

WZB¬E, where E is a vector space; thus any open subset is again a fibrewise

manifold. The foundations of fibrewise differential topology are developed. By the

Pontrjagin–Thom construction, a fibrewise smooth map f :M!N gives rise to the

Gysin or Umkehr stable map f ! :N+

B
!M ν( f )

B
of Thom spaces, or more generally

N ξ

B
!M f*ξGν( f )

B
for any virtual vector bundle ξ over N. Following Atiyah, M−τ

B(M)

B
is

recognized as the dual of M
+B

, and the map f ! is dual to f
+
. Sullivan’s result on the

Euler class of a flat vector bundle is an application.

Miller showed that the unitary group U(n) splits stably. The claim is that this is

best viewed as a fibrewise result. There is an extended discussion of the work on

configuration spaces by Snaith, Cohen and many others. The space Ck(M ) is the

space of distinct k-tuples in a manifold M ; as k varies, we obtain C(M ). More

generally, we have Ck(M ;Y ), which attaches to each of the k points a label in the

pointed space Y, and hence C(M ;Y ). When Y is connected, the Pontrjagin–Thom

construction gives a homotopy equivalence for C(M ;Y ). The special cases D", Dn and

S " of M yield the models for ΩΣY by James, ΩnΣnY by May, and the free loop space
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on ΣY. Further, the natural filtration of C(M ;Y ) splits stably. This is all done for B

a point ; everything can be done fibrewise too, including the fibrewise EHP sequence.

Chapter 4 very briefly introduces the fibrewise stable homology category, in which

homologically equivalent spaces over B are, in effect, identified. There is one for each

multiplicative generalized homology theory. After setting up the foundations, this

chapter mentions about 12 major topics, all in 20 pages.

This is a reference work rather than a textbook, but it is only partly based on

previously published material. It is not entirely self-contained; for many details and

some results, the reader is referred elsewhere. Nor is it exhaustive, as the field is not

yet mature. The notation often seems overly elaborate ; there are relative versions

everywhere. Categorical notation and language are generally avoided.

Johns Hopkins University J. M B
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