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Abstract

Answering a question of Gromov [7], we shall present an example of a finitely generated group Γ
and two non-principal ultrafilters A,B such that the asymptotic cones ConA Γ and ConB Γ are not
homeomorphic.

1. Introduction

Let Γ be a finitely generated group equipped with a fixed finite generating set,
and let d be the corresponding word metric. Consider the sequence of metric spaces
Xn = (Γ, dn) for n > 1, where dn(g, h) = d(g, h)/n. In [5], Gromov proved that if Γ
has polynomial growth, then the sequence (Xn | n > 1) of metric spaces converges in
the pointed Gromov–Hausdorff topology to a complete geodesic space Con∞(Γ), the
asymptotic cone of Γ. (Recall that a geodesic space is a metric space (X, d) such that
for all points x, y ∈ X, there exists an isometric mapping from the interval [0, d(x, y)]
to a path in X joining x and y.) In [4], van den Dries and Wilkie generalised the
construction of asymptotic cones to arbitrary finitely generated groups. However,
their construction involved the choice of a non-principal ultrafilterA on the set N+

of positive natural numbers, and it was not clear whether the resulting asymptotic
cone ConA(Γ) depended on the choice of the ultrafilter A. In this paper, answering
a question of Gromov [7], we shall present an example of a finitely generated group
Γ and two non-principal ultrafilters A,B such that the asymptotic cones ConA Γ
and ConB Γ are not homeomorphic.

Our group Γ will be chosen from the class of small cancellation groups which
was introduced by Bowditch in [1]. For each n ∈ N+, let wn(a, b) be the word
(anbn)7 in the two letters a and b; and for each I ⊆ N+, let ΓI be the group with
presentation

〈a, b | (wn(a, b))n∈I〉.
Then ΓI satisfies the C ′(1/6) cancellation property; that is, whenever u is a common
initial subword of two distinct elements r1, r2 of the set RI of all cyclic conjugates
of relators and their inverses, we have 6 length(u) < min{length(r1), length(r2)}. This
implies that if w is a reduced word in the letters a, b which represents the identity
element in ΓI , then there exists an element r ∈ RI which has a common subword of
length more than length(r)/2 with w. (For example, see [8, Section V.4].) Notice that
for such an element r, we must have length(r) < 2 length(w). So an easy induction
on length(w) yields the following result.
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Lemma 1.1. Suppose that w is a (not necessarily reduced ) word in the letters a, b
which represents the identity element in ΓI . Then w lies in the normal closure of the
set of relators

{w`(a, b) | ` ∈ I, ` < length(w)/7}.
In this section, after giving the definition of an asymptotic cone, we shall prove

that if I is any infinite subset of N+ and A is any non-principal ultrafilter which
contains I , then the asymptotic cone ConA(ΓI ) is not simply connected. Then, in
Section 2, we shall prove that if I is a suitably chosen sparse subset of N+, then
there exists a non-principal ultrafilter B such that the asymptotic cone ConB(ΓI ) is
an R-tree. A geodesic space (X, d) is said to be an R-tree if and only if any two
points of X are the endpoints of a unique topological arc (that is, the image of
an injective continuous function from a closed interval of R into X). In particular,
R-trees are simply connected. Hence the asymptotic cones ConA(ΓI ) and ConB(ΓI )
are not homeomorphic.

Definition 1.2. A non-principal ultrafilter on N+ is a collection A of subsets
of N+ satisfying the following properties.

(i) If A,B ∈ A, then A ∩ B ∈ A.

(ii) If A ∈ A and A ⊆ B ⊆ N+, then B ∈ A.

(iii) For all A ⊆ N+, either A ∈ A or N+ \ A ∈ A.

(iv) If F is a finite subset of N+, then F /∈ A.

Equivalently, if ω : P(N+) → {0, 1} is the function such that ω(A) = 1 if and
only if A ∈ A, then ω is a finitely additive probability measure on N+ such that
ω(F) = 0 for all finite subsets F of N+. It is easily checked that if (rn) is a bounded
sequence of real numbers, then there exists a unique real number ` such that

{n ∈ N+ | |rn − `| < ε} ∈ A
for all ε > 0. We write ` = limA rn.

Definition 1.3. Let Γ be a finitely generated group equipped with a fixed finite
generating set, and let d be the corresponding word metric. For each n > 1, let
Xn = (Γ, dn) be the metric space defined by dn(g, h) = d(g, h)/n. Let e be the identity
element of Γ. Then X∞ is the set of all sequences (gn) of elements of Γ such that
there exists a constant c with dn(gn, e) 6 c for all n ∈ N+.

Let A be a non-principal ultrafilter on N+. Define an equivalence relation ∼
on X∞ by (gn) ∼ (hn) if and only if limA dn(gn, hn) = 0, and for each (gn) ∈ X∞,
let (gn)A denote the corresponding equivalence class. Then the asymptotic cone is
defined to be

ConA(Γ) = {(gn)A | (gn) ∈ X∞}
endowed with the metric

dA((gn)A, (hn)A) = limA dn(gn, hn).

Proposition 1.4 (van den Dries and Wilkie [4]). If Γ is a finitely generated
group equipped with a fixed finite generating set and A is a non-principal ultrafilter
on N+, then ConA(Γ) is a complete geodesic space.



asymptotic cones of finitely generated groups 205

The asymptotic cone ConA(Γ) can be understood intuitively as follows. (Our
account borrows heavily from those in [7] and [2].) Imagine an observer who
moves away from the Cayley graph of Γ. Then Xn is what he sees if he pauses
to observe the Cayley graph when the points of Γ that are actually at a distance
n apart appear to be at only a distance 1 apart. As the observer continues to
move away, any finite configuration will eventually become indistinguishable from a
single point; but he may observe certain finite configurations which resemble earlier
configurations. The asymptotic cone ConA(Γ) is a space which encodes all of these
recurring finite configurations. For example, let I be an infinite subset of N+, and let
A be a non-principal ultrafilter which contains I . Then for each n ∈ I , the relator
wn(a, b) = (anbn)7 can be regarded as a loop of length 14n in the Cayley graph of
ΓI , and hence as a loop of length 14 in Xn. The sequence of loops (wn(a, b) | n ∈ I)
gives rise to a closed path of length 14 in ConA(ΓI ), as follows. For each n ∈ I ,
write wn(a, b) = x1 · · · x14n, where each xi ∈ {a, b}, and define fn : [0, 14] → ΓI by
fn(t) = x1 · · · xdtne. If n /∈ I , then let fn : [0, 14] → ΓI be the function such that
fn(t) = e for all t ∈ [0, 14]. Now define f : [0, 14] → ConA(ΓI ) by f(t) = (fn(t))A.
Then it is easily checked that f is a closed path of length 14 in ConA(ΓI ). We shall
shortly prove that f is not null-homotopic, and hence that ConA(ΓI ) is not simply
connected.

Next we shall address the question of where the ultrafilter A comes into the
intuitive picture of ConA(Γ). As the definition of the closed path f indicates, if
C /∈ A, then the observations of the metric spaces {Xn | n ∈ C} can safely be
ignored. So we can imagine that our observer walks backwards away from the
Cayley graph of Γ with his eyes tightly shut, opening them only at rare intervals. It
will then hardly be surprising if two observers who open their eyes at very different
times should have very different impressions of the asymptotic geometry of the
Cayley graph of Γ. For example, suppose that I = {im | m ∈ N} is an extremely
sparse subset of N+, and that a second observer opens his eyes only at various
stages {tm | m ∈ N} such that im � tm � im+1 for some m ∈ N. Suppose that N is a
large natural number, and that our second observer examines the ball of radius N
around e in Xtm , which corresponds to the ball of radius Ntm around e in the Cayley
graph of ΓI . By choosing m sufficiently large, we can suppose that Ntm � im+1. This
implies that the ball of radius Ntm around e in the Cayley graph of ΓI will be the
same as that in the Cayley graph of the group Γm, which has the presentation

〈a, b | wi0 (a, b), . . . , wim(a, b)〉.

Since Γm is a finitely presented group which satisfies the C ′(1/6) cancellation prop-
erty, it follows that Γm is a hyperbolic group. Hence, by Gromov [6], every asymptotic
cone of Γm is an R-tree. Since im � tm, this implies that the ball of radius N around
e in Xtm will already look very much like a tree to our second observer. Since N
could be chosen to be arbitrarily large, our second observer will believe that the
asymptotic cone of ΓI is an R-tree.

Now that we have described the intuition which motivates our construction, we
are ready to present the details.

Theorem 1.5. If I is any infinite subset of N+ and A is any non-principal ultra-
filter which contains I, then the asymptotic cone ConA(ΓI ) is not simply connected.
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Proof. (This argument is essentially just a proper subset of Subsections 2.3
and 2.4 of Bridson [2].) Let S = [0, 1]× [0, 1] be the unit square, and let ∂S be the
boundary of S . Let f : [0, 14] → ConA(ΓI ) be the closed path which was defined
earlier. Then it is easy to convert this path into a corresponding continuous map
h : ∂S → ConA(ΓI ) which parametrises the path proportionately to the length of
∂S . Suppose that h is null-homotopic. Then h can be extended to a continuous map
H : S → ConA(ΓI ). Let M be an integer such that if we subdivide S into M2 equally
small squares with vertices {pi,j | 0 6 i, j 6 M}, then dA(H(pi,j), H(pi′ ,j ′)) < 1/2 for
every pair of adjacent vertices pi,j and pi′ ,j ′ . For each 0 6 i, j 6M, let (xni,j | n ∈ N+)
be a sequence of elements of ΓI such that H(pi,j) = (xni,j)A, chosen so that if pi,j ∈ ∂S
and h(pi,j) = f(t), then (xni,j) = (fn(t)). Let n ∈ I be an integer such that whenever pi,j
and pi′ ,j ′ are adjacent vertices, dn(x

n
i,j , x

n
i′ ,j ′) < 1 and hence d(xni,j , x

n
i′ ,j ′) < n. Notice that

if pi,j , pi′ ,j ′ ∈ ∂S are adjacent vertices, then the edge between pi,j and pi′ ,j ′ parametrises
an arc of length 14/4M of the closed path f : [0, 14]→ ConA(ΓI ). Consequently, if
we choose M > 14 and n > 4, then the corresponding arc between xni,j and xni′ ,j ′ in
the loop wn(a, b) has length at most d14n/4Me + 1 < n. If the adjacent vertices pi,j
and pi′ ,j ′ do not both lie in ∂S , then choose a geodesic segment between xni,j and xni′ ,j ′

in the Cayley graph of ΓI . Thus to the boundary of each of the M2 small squares in
S , we have now associated a loop of length less than 4n in the Cayley graph of ΓI .
For each such small square S ′, the labels on the edges of the associated loop yield a
word w′ of length less than 4n which represents the identity element in ΓI . Applying
Lemma 1.1, we see that each such word w′ lies in the normal closure of the set of
relators {w`(a, b) | ` ∈ I, ` < n}. But this implies that wn(a, b) also lies in the normal
closure of the set {w`(a, b) | ` ∈ I, ` < n}, which is a contradiction.

2. The construction

If (X, d) is a metric space and w ∈ X is a base point, then we define the Gromov
inner product on X by

(x · y)w = 1
2
(d(x, w) + d(w, y)− d(x, y)).

Let δ > 0. Then the metric space (X, d) is said to be δ-hyperbolic if for every
w, x, y, z ∈ X, we have that

(x · y)w > min{(x · z)w, (z · y)w} − δ.
If Γ is a finitely generated group equipped with a fixed finite generating set, then
Γ is said to be hyperbolic if and only if its Cayley graph is δ-hyperbolic for some
δ > 0. (It is well known that the hyperbolicity of Γ does not depend on the choice
of the finite generating set.) We shall make use of the following characterisation of
δ-hyperbolicity, a proof of which can be found in [3, Section 1.1].

Lemma 2.1. The metric space (X, d) is δ-hyperbolic if and only if

d(x, y) + d(z, w) 6 max{d(x, z) + d(y, w), d(x, w) + d(y, z)}+ 2δ

for all points w, x, y, z ∈ X.

We shall also make use of the following well-known characterisation of R-trees,
a proof of which can be found in [3, Section 3.4].
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Theorem 2.2. Let (X, d) be a geodesic space. Then (X, d) is an R-tree if and only
if (X, d) is 0-hyperbolic.

We are now ready to begin our construction. We shall define inductively two
strictly increasing sequences of natural numbers 〈im | m ∈ N〉 and 〈tm | m ∈ N〉. First
we set i0 = 1. Now suppose that m > 0 and that we have already defined 〈in | n 6 m〉
and 〈tn | n < m〉. Let Γm be the group with the presentation

〈a, b | wi0 (a, b), . . . , wim(a, b)〉.
Since Γm is a finitely presented group which satisfies the C ′(1/6) cancellation prop-
erty, it follows that Γm is a hyperbolic group. So there exists a constant δm > 0
such that the Cayley graph of Γm is δm-hyperbolic. Let tm be any integer such that
tm−1 < tm and 2δm/tm < 1/m, and let im+1 be any integer such that im < im+1 and
im+1 > 8mtm. Finally, let I = {im | m ∈ N}, and let B be any non-principal ultrafilter
which contains the set T = {tm | m ∈ N}.

Theorem 2.3. ConB(ΓI ) is an R-tree.

Proof. Applying Lemma 2.1 and Theorem 2.2, we see that it is enough to show
that

dB(P1, P2) + dB(P3, P4)

6 max{dB(P1, P3) + dB(P2, P4), dB(P1, P4) + dB(P2, P3)}
for all points P1, . . . , P4 ∈ ConB(ΓI ). So let P1, . . . , P4 be an arbitrary 4-tuple of
elements of ConB(ΓI ), and for each 1 6 k 6 4, let (Pn

k | n ∈ N+) be a sequence
of elements of ΓI such that Pk = (Pn

k )B. Let N be a natural number such that
dB(Pk, (e)B) < N for each 1 6 k 6 4. Now fix some ε > 0, and let n0 be an integer
such that n0 > N and 5/n0 < ε. Then there exists a set A ∈ B such that if n ∈ A,
then the following conditions are satisfied.

(a) n > tn0
.

(b) If 1 6 k, ` 6 4, then |dn(Pn
k , P

n
` )− dB(Pk, P`)| < 1/n0.

(c) If 1 6 k 6 4, then dn(P
n
k , e) < 2N.

Let B = A ∩ T . Then B ∈ B, so there exists an integer tm ∈ B. Let 1 6 k, ` 6 4.
Then dtm (P tm

k , e), dtm (P tm
` , e) < 2N, so d(P tm

k , e), d(P
tm
` , e) < 2Ntm. Let pk, p` be geodesic

paths from e to P tm
k , P tm

` , respectively, in the Cayley graph of ΓI , and let pk,` be a
geodesic path from P tm

k to P tm
` . Then the labels on the edges of the loop pk ∗pk,` ∗p−1

`

yield a word w of length less than 8Ntm which represents the identity element in ΓI .
Since

8Ntm < 8n0tm < 8mtm < im+1,

Lemma 1.1 implies that w lies in the normal closure of the set of relators
{wi0 (a, b), . . . , wim(a, b)}. It follows that pk,` is also a geodesic path from P tm

k to
P tm
` in the Cayley graph of the hyperbolic group Γm. Thus each pair of points
P tm
k , P

tm
` is the same distance apart in the Cayley graphs of ΓI and Γm. Consequently,

we must have

d(P tm
1 , P

tm
2 ) + d(P tm

3 , P
tm
4 )

6 max{d(P tm
1 , P

tm
3 ) + d(P tm

2 , P
tm
4 ), d(P tm

1 , P
tm
4 ) + d(P tm

2 , P
tm
3 )}+ 2δm.
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Using the fact that 2δm/tm < 1/m < 1/n0, we now obtain

dB(P1, P2) + dB(P3, P4)

< dtm (P tm
1 , P

tm
2 ) + dtm (P tm

3 , P
tm
4 ) + 2/n0

< max{dtm (P tm
1 , P

tm
3 ) + dtm (P tm

2 , P
tm
4 ), dtm (P tm

1 , P
tm
4 ) + dtm (P tm

2 , P
tm
3 )}+ 3/n0

< max{dB(P1, P3) + dB(P2, P4), dB(P1, P4) + dB(P2, P3)}+ 2/n0 + 3/n0

< max{dB(P1, P3) + dB(P2, P4), dB(P1, P4) + dB(P2, P3)}+ ε.

Since ε > 0 was arbitrary, the result follows.
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