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1. The thirteen spheres problem

Nearly four hundred years ago, the cubic close-packing of equal spheres in R$ was

discovered by Kepler [21], in which each sphere touches 12 others. In 1694, Gregory

and Newton discussed the following thirteen spheres problem. Can a rigid material

sphere be brought into contact with 13 other such spheres of the same size? Gregory

believed ‘yes ’, while Newton thought ‘no’.

Let B be the three-dimensional unit sphere centred at the origin o, and let Bx

be one which touches B at its boundary. It is easy to calculate that the smallest cone

containing Bx and taking o as its vertex intersects the boundary of B at a cap of

surface area 2 01®
o3

2 1π. By comparing this surface area with the surface area of the

unit sphere, one might immediately see that the largest number of the nonoverlapping

unit spheres which can be brought into contact with a fixed one is less than or equal

to 14. However, this is not enough to solve the thirteen spheres problem.

In Kepler’s example, the kissing configuration is stable. In other words, none of

the 12 spheres which are in contact with the fixed one can be moved around.

However, the configuration of twelve unit spheres kissing a fixed sphere at the vertices

of a regular icosahedron is unstable : each of the twel�e spheres can mo�e around freely

in a small area ! This fact, in some sense, illustrates the complexity of the thirteen

spheres problem.

Although the thirteen spheres problem is very natural and very simple sounding,

its solution was first achieved only in 1874 by Hoppe [18]. The largest number of

nono�erlapping unit spheres which can be brought into contact with a fixed one is 12.

Newton was right ! Later, several simpler proofs for this assertion were given by

Gu$ nter [16], Schu$ tte and van der Waerden [28] and Leech [22]. However, none of

them is trivial. Schu$ tte and van der Waerden’s proof involves an argument of graph

theory, reduction and complicated computation, while Leech’s applies Euler’s

theorem on polyhedra, and heavy computation as well.

There is an immediate connection between the thirteen spheres problem and the

cap packing problem, or the Tammes problem (see [7]). What is the largest diameter d
m

of m equal caps that can be placed on the surface of a unit sphere without o�erlap? More

precisely, d
"$

& 1 will imply Gregory’s belief, and d
"$

! 1 will be in favour of Newton.

The truth is d
"$

! 1!

Received 19 September 1996; revised 24 January 1997.

1991 Mathematics Subject Classification 11H31, 52C17.

This work is supported by a Research Fellowship of The Royal Society.

Bull. London Math. Soc. 30 (1998) 1–10



2 . 

2. The kissing numbers of con�ex bodies, general bounds

As usual, denote by K a d-dimensional convex body with boundary ¦(K ) and

interior int (K ), and by Λ a d-dimensional lattice.

K . The translati�e kissing number N(K ) of K is the largest number

of nono�erlapping translates of K which can be brought into contact with K at its

boundary. The lattice kissing number N*(K ) of K is the similar number when the

translates are taken from any lattice packing of K.

The translative kissing number of a convex body is different from its Newton

number. The latter considers the ‘congruences of K ’ instead of the ‘translates of K ’.

However, some authors use Hadwiger number for our term translative kissing

number.

Let X be a convex set, and let D(X ) be the difference set of X, D(X )¯²x®y :

x, y `X ´. Then a simple argument involving convexity yields the following. For two

points z
"
and z

#
, (Xz

"
)f(Xz

#
)¯W if and only if ("

#
D(X )z

"
)f("

#
D(X )z

#
)¯W.

Therefore, for every convex body K,

N(K )¯N(D(K )) and N*(K )¯N*(D(K )).

Since D(K ) is centrally symmetric, to search for bounds for N(K ) and N*(K ), it is

sufficient to deal with only the centrally symmetric convex bodies.

One hundred years ago, in the forerunner to his study of the geometry of

numbers, Minkowski [24] found the following.

T 1. For e�ery d-dimensional con�ex body K,

N*(K )% 3d®1, (1)

where equality holds if and only if K is a parallelepiped. In addition, if K is strictly

con�ex, then

N*(K )% 2(2d®1).

Minkowski’s proof is based on convexity and elementary number theory. Without

loss of generality, we assume that K is centrally symmetric and N*(K ) is attained in

the lattice packing K:d, where :d indicates the d-dimensional integer lattice. Then

N*(K ) is the number of points in the set ¦(2K )f:d. If x¯ (x",x#,… ,xd ) and

y¯ (y", y#,… , yd ) are two different points of this set, then

xi®yi 3 0mod3

cannot hold simultaneously for all i¯ 1, 2,… , d. Otherwise, by convexity, we can

obtain
"

$
(x®yo) ` int (2K )f:d,

which contradicts the assumption that K:d is a lattice packing. Then (1) follows

easily. This is the key idea of his proof.

To generalize Minkowski’s result from N*(K ) to N(K ), in 1957 Hadwiger [17]

obtained the following.
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T 1*. For e�ery d-dimensional con�ex body K,

N(K )% 3d®1, (2)

where equality holds if and only if K is a parallelepiped.

Hadwiger’s proof idea is brilliant—simple and effective. Let K be centrally

symmetric, and let Kz
"
,Kz

#
,… ,Kz

N(K)
be N(K ) nonoverlapping translates

of K which touch K at its boundary. Then, by convexity and symmetry, one has

KZ 3K and
Kz

i
Z 3K, i¯ 1, 2,… ,N(K ).

Therefore
(N(K )1) �(K )% �(3K )¯ 3d�(K ),

where �(K ), as usual, indicates the volume of K. Then (2) follows.

A few years later, applying a similar idea, Groemer [12] presented a more detailed

proof of this result.

On the other hand, it is very natural to ask the following.

P 1. What are the best lower bounds of N(K ) and N*(K ) for all d-

dimensional convex bodies? For which convex bodies can these bounds be attained?

In 1953, Swinnerton-Dyer [29] proved a result which implies the following.

T 2. For e�ery d-dimensional con�ex body K,

N*(K )& d(d1).

More precisely, Swinnerton-Dyer discovered the following. In e�ery densest lattice

packing of a d-dimensional con�ex body, each translate touches at least d(d1) others.

His proof is comparatively complicated. As a counterpart of Swinnerton-Dyer’s

result, in the sense of Baire category, Gruber [13] proved that : ‘Most ’ d-dimensional

con�ex bodies ha�e not more than 2d # neighbours in any of their densest lattice packings.

In 1961, Gru$ nbaum [15] proposed the following.

C 1. (a) For e�ery d-dimensional simplex S, N(S )¯ d(d1).

(b) For e�ery e�en number m, d(d1)%m% 3d®1, there is a d-dimensional con�ex

body K such that N(K )¯m.

Contradicting the first part of this conjecture, Zong [34] was able to prove the

following.

T 3. For a tetrahedron T, 18¯N*(T )%N(T )% 19. For a d-dimensional

simplex S, N(S )&N*(S )& d(d1)6 9d3: .
Combining this theorem with the main result of Hoylman [19], one can

immediately obtain the following rather counter-intuitive phenomenon. In the densest

lattice tetrahedra packings, e�ery tetrahedron touches 14 others. On the other hand,

there is a lattice tetrahedra packing with much smaller density, in which e�ery one

touches 18 others.
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Indeed, Theorem 3 makes Problem 1 more challenging and more interesting.

Going further in this direction, applying D�oretzky’s theorem about the spherical

sections of a centrally symmetric convex body in high dimensions (see [37]) and

induction, Zong [36] obtained the following conditional result. If d(d1) is the best

lower bound of N(K ) for all d-dimensional con�ex bodies, then for any positi�e number

ε there will be a con�ex body B* such that δH(B,B*)! ε and N*(B*)¯ d(d1), where

B is a d-dimensional unit sphere and δH is the Hausdorff metric. Comparing this

assertion with Theorems 4 and 6 in Section 3, one might easily observe their strange

implication.

3. The kissing numbers of spheres

Similar to the packing density problem (see Rogers [27]), spheres are the most

interesting cases for kissing numbers too. For convenience, we denote by Bd the d-

dimensional unit sphere. In 1965, Wyner [31] found the following.

T 4.

N(Bd)& 2!
±
#!(&d("+o(")). (3)

The idea used to obtain this bound is simple. Let Bdz
"
,Bdz

#
,… ,Bdz

N(B
d
)
be

N(Bd ) nonoverlapping unit spheres which touch Bd at its boundary. Then

z
i
` ¦(2Bd ), i¯ 1, 2,… ,N(Bd ),

and

¦(2Bd )Z 5
N(B

d
)

i="

(int (2Bd )z
i
).

Consequently, one obtains

5
N(B

d
)

i="

(¦(2Bd )f(int (2Bd )z
i
))¯ ¦(2Bd )

and

3
N(B

d
)

i="

s(¦(2Bd )f(int (2Bd )z
i
))& s(¦(2Bd )), (4)

where s(X ) indicates the (d®1)-dimensional measure of X. By detailed computation,

(3) follows from (4).

From (4) it is easy to see that, as a lower bound, (3) is far from the best. For an

upper bound for N(Bd ), applying an idea of Blichfeldt [3], in 1955 Rankin [26]

obtained the following.

T 5.

N(Bd )'π"/#d $/#2(d−")/#,

where f(d )' g(d ) means f(d )% g(d ) when d is large.

The idea of the proof is splendid, indeed. Roughly speaking, it runs as follows. Let

Bdz
"
,Bdz

#
,… ,Bdz

N(B
d
)
be N(Bd ) nonoverlapping unit spheres which touch Bd

at its boundary. By projecting from o to Bdz
i
, we obtain N(Bd ) caps, say C

"
,C

#
,… ,
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C
N(B

d
)
, of geodesic radius π}6, which pack on the surface of Bd. Now we proceed to

deal with this cap packing. First, enlarge these caps C
i
homothetically to caps C$

i
of

geodesic radius π}4. These new caps perhaps do not form a packing in ¦(Bd ). Second,

attach a suitable ‘mass ’ δ
i
(x) to every point x of C$

i
, such that

δ(x)¯ 3
N(B

d
)

i="

δ
i
(x)% 1. (5)

Let M
i
¯ !

C$

i

δ
i
(x) ds. Then by (5) one obtains

3
N(B

d
)

i="

M
i
¯&

¦(Bd
)

δ(x) ds% s(Bd ),

and consequently

N(Bd)%
s(Bd )

M
"

.

By some detailed computation, Rankin’s result follows.

Let A(d,φ) be the largest number of points in ¦(Bd ) such that the minimum

geodesic distance among them is φ. Evidently, N(Bd )¯A(d,π}3). Let F
d
(α) be the

SchlaX fli function defined by

F
d
(α)¯

2dU

d !ω
d

,

where U is the area of a regular spherical simplex in ¦(Bd ) of angle 2α, and ω
d

is the

surface area of the d-dimensional unit ball. In 1978, to verify a conjecture of Coxeter

[6], Bo$ ro$ czky [4] proved the following.

T 5*.

A(d,φ)%
2F

d−"
(α)

F
d
(α)

,

where sec (2α)¯ sec (φ)d®2.

By setting φ¯π}3 in this theorem, one obtains

log
#
N(Bd )'

d

2
.

This bound is of more or less the same order as Theorem 5.

During the last three decades, the most significant progress concerning the kissing

numbers of spheres has been achieved mainly by applying coding theory and linear

programming.

Let C be a spherical code, in other words, a finite subset of ¦(Bd ). Let δ
t
(x) be the

Dirac delta function defined by

δ
t
(x)¯ (0¢

x1 t,

x¯ t,

and

&
¢

−¢

δ
t
(x) dx¯ 1. (6)



6 . 

Clearly, the Dirac delta function is not a proper function in the usual sense, and a

more formal definition may be given as the limit of a suitable sequence of analytical

functions satisfying (6).

For ®1% t% 1, let p(t) be the number of ordered pairs c, c« `C such that ©c, c«ª
¯ t, where ©x, yª is the inner product of x and y, and define

F(t)¯
1

card ²C ´
3

x : p(x)1!

δ
x
(t) p(x).

Then a simple combinatorical argument yields

&"

−"

F(t) dt¯ card ²C ´.

In addition, denoting by P α,α

i
(t) the Jacobi polynomial (see [1]) with i& 0, we have

&"

−"

F(t)P α,α

i
(t) dt¯

1

card ²C ´
3

c,c«`C

P α,α

i
(©c, c«ª)& 0,

where P α,α

i
(©x, yª) is positive definite.

If there are N(Bd ) nonoverlapping unit spheres touching Bd at its boundary, then

the N(Bd ) touching points form a spherical code with F(t)¯ 0 for "

#
! t! 1. Therefore

an upper bound to N(Bd ) will be given by the optimal solution to the following linear

programming problem. Choose the F(t) so as to maximize !"/#
−"

F(t) dt subject to the

constraints F(t)& 0 for ®1% t% "

#
and

&"/#

−"

F(t)P α,α

i
(t) dt&®P α,α

i
(1)

for i¯ 0, 1,… .

This argument leads to the following fundamental lemma (see [8], [20] or [25]).

L 1. Assume d& 3. If f(t) is a real polynomial which satisfies

(1) f(t)% 0 for ®1% t% "

#
, and

(2) the coefficients in the expansion of f(t) in terms of Jacobi polynomials

f(t)¯3
k

i=!

f
i
P α,α

i
(t),

where α¯ (d®3)}2, satisfy f
!
" 0, f

"
& 0,… , f

k
& 0, then

N(Bd )%
f(1)

f
!

.

Based on this lemma, with the help of harmonic polynomials and linear

programming, Rankin’s upper bound has been improved by Levens) tein [23] and by

Kabatjanski and Levens) tein [20] to the following.

T 5**.

N(Bd )% 2!
±
%!"d("+o(")).

Applying Lemma 1 with skillful choice of f(t), Levens) tein [23] and Odlyzko and

Sloane [25] independently found the following.
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T 6.

N*(B))¯N(B))¯ 240, N*(B#%)¯N(B#%)¯ 196560.

In addition, Bannai and Sloane [2] were able to prove the following.

T 6*. There is a unique way (up to isometry) of arranging 240 (or 196560)

nono�erlapping unit spheres in R) (or R#%) so that they touch another unit sphere.

Theorems 6 and 6* are very surprising; they are the only exact results about N(Bd )

that have been obtained during the last century! Even today, we do not know whether

the exact value of N(B%) is 24 or 25. There are hundreds of articles dealing with sphere

packings and coding theory; we shall not try to go into detail here. For more

information on this subject, see Conway and Sloane [5].

In the 1970s, in a series of papers, Watson was able to determine N*(Bd ) for

d¯ 4, 5, 6, 7, 8 and 9 by studying positi�e quadratic forms. Denote by F the family of

positive quadratic forms

f(x)¯ 3
d

i,j="

a
ij
x
i
x
j
,

and by m( f ) the number of the points z `:dc²o´ at which f(z) attains its minimum.

It is easy to see that

N*(Bd )¯max
f`F

²m( f )´.

By reduction, one need only deal with finitely many classes of quadratic forms

(reduced ones). In this way, Watson [30] was able to prove the following.

T 6**.

d

N*(Bd ) )
4

24 )
5

40 )
6

72 )
7

126 )
8

240 )
9

272

4. Miscellaneous

4.1 Results concerning two-dimensional con�ex domains. In 1961, to prove a

conjecture of Hadwiger, Gru$ nbaum [15] proved the following.

T 7. Let D be a two-dimensional con�ex domain. Then

N(D)¯N*(D)¯ (86
if K is a parallelogram,

otherwise.

Although this assertion itself is simple, its proof is rather technical. It is proved

by applying the following basic result.

L 2. For each boundary point x of any centrally symmetric con�ex domain

D, there is an inscribed affine regular hexagon of D which takes x as one of its six

�ertices.
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Let K
"

and K
#

be convex bodies in Rm and Rn, respectively. Denote by K
"
GK

#

the Cartesian product of K
"

and K
#
. Observing the kissing configuration, one can

easily deduce

N(K
"
GK

#
)& (N(K

"
)1)(N(K

#
)1)®1.

Recently, Zong [35] proved the following.

T 7*. Let D be a two-dimensional con�ex domain, and let K be a d-

dimensional con�ex body. Then

N(DGK )¯ (9N(K )8

7N(K )6

if D is a parallelogram,

otherwise.

The proof of this result is comparatively complicated. Let δC be the Minkowski

metric given by an m-dimensional centrally symmetric convex body C. If C can be

partitioned into P(C ) parts X
"
,X

#
,… ,X

P(C)
such that

δC(x, y)! 1

whenever both x and y belong to the same part, then by projection (the argument is

not simple) one obtains

N(CGK )%P(C ) (N(K )1)®1.

Then, to prove Theorem 7*, one is left to partition a centrally symmetric convex

domain properly by applying Lemma 2.

Zong [35] also proposed the following.

C 2. There are two con�ex bodies K
"

and K
#

in high dimensions such

that

N(K
"
GK

#
)1 (N(K

"
)1)(N(K

#
)1)®1.

For a similar problem concerning density, see Gruber and Lekkerkerker [14].

4.2 Difference between N(K ) and N*(K ). The first convex body K for which

N(K )1N*(K ) was found by Watson [30] in 1971; he showed the following.

T 8.

N(B*)& 306, N*(B*)¯ 272.

For spheres, nine is so far the only known dimension in which this difference

exists. Perhaps N(Bd )¯N*(Bd ) holds for infinitely many values of d. However, it

looks as though N(Bd )1N*(Bd ) happens more frequently. This certainly is an

interesting problem, but also very hard.

For general convex bodies, Zong [32] found the following.

T 8*. Whene�er d& 3, there exists a d-dimensional con�ex body K such

that N(K )"N*(K ).

Although the proof is rather complicated, the example is simple. Cutting off two

pairs of small opposite corners from a unit cube yields this result.
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Following Theorems 8 and 8*, Zong [32] proposed the following.

P 2. What is the maximum difference between N(K ) and N*(K ) for all

d-dimensional convex bodies? For which convex bodies can this maximum be

attained?

4.3 Connections with blocking numbers. Denote by B(K ) the blocking number of

K, the smallest number of nonoverlapping translates of K which touch K and prevent

any other from touching K. It is easy to see that the blocking number is a counterpart

and a limited case of the kissing number. Similarly, we have B(K )¯B(D(K )) for

every convex body. In [33] (see also [37]), Zong observed the following rather counter-

intuitive phenomenon.

T 9. When the dimension number d is large, there are two con�ex bodies

K
"

and K
#

such that

N(K
"
)!N(K

#
) but B(K

"
)"B(K

#
).

As for the bounds of B(K ), Zong [33] made the following conjecture.

C 3. For e�ery d-dimensional con�ex body K,

2d%B(K )% 2d.

This conjecture implies Hadwiger’s con�ering conjecture (see [7]) for centrally

symmetric convex bodies.

A. I am obliged to Professors Larman and Rogers for

helpful discussions, and to the referee for helpful comments.
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