
BOOK REVIEWS

SPECIAL FUNCTIONS

(Encyclopedia of Mathematics and its Applications 71)

By G E. A, R A and R R : 664 pp., £55.00

(US$85.00),  0-521-62321-9 (Cambridge University Press, 1999).

As suggested by their name, special functions form a particular and privileged

class among all functions that are conceivable. Their study has in many cases paved

the way to general ideas and concepts in mathematics. Famous examples are the Γ-

function, the ζ-function, and hypergeometric functions studied by Euler and Gauss.

As is well known, study of their properties has been a source of inspiration for the

development of complex analysis. This is an ongoing process. Nowadays, we know

many instances of special functions which may lead to entirely new fields of

mathematics. Examples are Ramanujan’s mock theta functions, and hypergeometric

functions satisfying difference-differential equations associated to Lie algebras.

The present book is a volume in the Encyclopedia of Mathematics and its

Applications. In writing such a volume, the authors had the difficult task of making

a choice from the overwhelming multitude of subjects which constitute ‘special

functions ’. In principle, their choice is motivated by the class of hypergeometric

functions in one variable. Classical functions such as sine, cosine and log are

examples, as are Bessel functions and a large array of orthogonal polynomials. The

first eight chapters of the book give an introduction to the Γ-function, Gauss’

hypergeometric function, Bessel functions and orthogonal polynomials. An interest-

ing feature of these chapters is that some aspects of hypergeometric functions are

treated which are not easy to find elsewhere in book form, or which are scattered

throughout various specialised books. For example, the Barnes integral approach,

evaluation of generalised hypergeometric series at x¯ 1, the arithmetic–geometric

mean in a formula for π, and the Wilf–Zeilberger method for mechanical summation

of series can be found in Chapters 2 and 3.

If the reader would like to have an introduction to orthogonal polynomials, then

a quick and thorough one can be found in Chapter 5, with many examples in Chapter

6 and applications in Chapter 7.

As we read further, we come to a chapter on Selberg’s formula, which expresses

the integral
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as a finite product of gamma factors. In the book we find two proofs, one by Aomoto

and one by Anderson. The latter found this from his proof of a finite field analogue

of the formula. This is an aspect of interest to readers oriented towards number

theory. Classical functions such as the Γ-function and Euler’s beta function have their

finite field counterparts in the form of Gauss sums and Jacobi sums. There is an
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interesting parallel between the theorems which hold in the two worlds of special

functions and number theory. The authors pay attention to this aspect at several

places in the book.

Other analogues of classical functions are the q-functions, such as q-gamma

functions and q-hypergeometric functions, also known as basic hypergeometric

functions. As a matter of philosophy, a q-analogue is formed by replacing

Pochhammer symbols (α)
n

by their q-versions (a ; q)
n
¯ (1®a) (1®aq)… (1®aqn−").

Here q is thought of as some number with rqr! 1 for convergence purposes. In this

way, the hypergeometric series
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as its q-version. A number of classical theorems on hypergeometric functions have

q-counterparts. In the final chapters of the book, we find several aspects of q-series

such as, for example, their relation to elliptic functions, Jacobi’s triple product

formula, basic hypergeometric series and their use in the theory of partitions, and

last but not least, the Rogers–Ramanujan identities.

As a valuable addition to the book, each chapter ends with a large collection of

exercises, some easy, some hard. A number of them deal with interesting and amusing

trivia ; others guide a reader through additional theory.

To summarise the content of the book, the large collection of exercises and an

extensive bibliography make this Encyclopedic volume a worthy entry-point into the

world of Special Functions.

Universiteit Utrecht F B

INTEGRABLE SYSTEMS: TWISTORS, LOOP GROUPS,

AND RIEMANN SURFACES

(Oxford Graduate Texts in Mathematics 4)

By N. J. H, G. B. S and R. S. W : 136 pp., £25.00,

 0-19-850421-7 (Clarendon Press, Oxford, 1999).

The study of integrable systems has a long history, but despite this there is still no

generally agreed definition of an integrable system. Instead, they are characterised by

a number of generally recognisable features, and as a result their study is not confined

to a narrow area of mathematics but involves the interplay of analytic, algebraic and

geometric analysis. The book under review is based on a series of lectures given at an

instructional conference for graduate students. Despite comprising only 136 pages,

the lectures cover an enormous amount of material, ranging from algebraic geometry

and the theory of Riemann surfaces to loop groups, connections, Yang–Mills

equations and twistor theory. However, despite this wide range, the book is

surprisingly self-contained and readable.

One of the earliest integrable systems to be studied was the Euler top, which

describes as asymmetric body rotating about its centre of mass. As Nigel Hitchin
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points out in the Introduction, this system exhibits three characteristic features of an

integrable system: the ability to give explicit solutions, the existence of many

conserved quantities, and the presence of algebraic geometry. A second classic

example of an integrable system is given by the Korteweg–de Vries (KdV) equation.

This non-linear partial differential equation describes the behaviour of water waves

in a shallow channel, and was used to explain the solitary wave observed by John

Scott Russell in 1834. The existence of soliton solutions which can be superposed

despite the non-linear nature of the equations is another feature of integrable systems.

The integrable nature of the KdV equation arises from the existence of a Lax pair,

that is, the existence of a pair of operators A,B such that the non-linear equation is

the consistency condition for solutions of the linear equation

dA

dt
¯ [A,B].

In the first chapter, Nigel Hitchin considers the case where A(z) is a polynomial-

valued matrix. The first two sections give a rapid introduction to Riemann surfaces,

while the next two consider vector bundles on Riemann surfaces. This material

explains the relationship between a Riemann surface M and the matrix A(z) via the

spectral curve det(y®A(z))¯ 0, and correspondingly the way that the eigenspace of

At(z) defines a line bundle over M. The key point about the Lax pair equation is that

it preserves the spectrum of A(z) (so the coefficients of the spectral curve are

preserved), and this allows one to encode the dynamics in the evolution of the line

bundle. One obtains integrable systems by requiring that this evolution is linear, and

it is shown that such flows are generated by elements of a cohomology class of M.

This construction may be thought of as a generalisation of the description of

integrable Hamiltonian systems in which the action variables are constant and the

angle variables evolve linearly on an n-dimensional torus.

The second chapter, by Graeme Segal, examines the mathematical structure which

underlies the use of the inverse scattering method to solve integrable equations. This

again starts by considering the representation in terms of a Lax pair, although in this

case A and B are differential operators : for example, in the KdV case, A¯®¦#
x
u

and B¯ 4¦$
x
®6u¦

x
®3u«. Provided that u satisfies the KdV equation, the eigenvalues

of A are preserved, while the evolution of the corresponding eigenfunctions is

generated by B. This leads to a simple rule for the evolution of the asymptotic

behaviour or ‘scattering data’ for these eigenfunctions. If one has a means of

reconstructing u from the scattering data, then this gives a way of solving the KdV

equation which is a non-linear generalisation of the Fourier transform. The scattering

caused by u may be described in terms of a scattering or holonomy matrix gλ (with

gλ ! 1 as λ!³¢), and thus determines an element of a loop group. Solving the

inverse scattering problem turns out to be a Riemann–Hilbert problem for g which

can be written as a linear integral equation. The general setting for such problems is

loop groups and Grassmannians, and in the final two sections the relationship

between integrable systems, restricted Grassmannians and algebraic curves is

considered, making contact between this picture and that considered by Hitchin in the

previous chapter.

The last chapter, by Richard Ward, discusses integrable systems in terms of

twistor theory. Once again the starting point is the Lax pair description, but this time

A and B are matrix differential operators depending on a spectral parameter λ.



  119

One may then reformulate the Lax equation as the condition that the covariant

derivatives of a connection commute and hence that the curvature vanishes. Many

examples of integrable systems can be described in this way; indeed, most well-known

examples are reductions of the self-dual Yang–Mills equations. Twistor theory

originated in Roger Penrose’s attempts to unite general relativity and quantum physics

using methods of complex holomorphic geometry. Although progress in achieving

this goal is slow, twistors have proved an extremely useful tool in mathematical

physics. In particular, solutions of the self-dual Yang–Mills equations correspond

to holomorphic vector bundles over (regions of) twistor space CP$, so again

algebraic geometry may be used to solve the integrable system.

The book gives a wide-ranging introduction to a modern approach to integrable

systems which explores the relationship between the geometrical and algebraic aspects

of the theory. In order to cover this much material in so little space, many topics are

presented in a concise form which many graduate students would find challenging.

However, all the sections are clearly written, and the approach has the advantage that

one can see the key features of the overall structure very clearly. I certainly found the

book very stimulating, and it made me want to look at the original papers for further

details. I can recommend it to anyone with a background in geometry and an interest

in dynamical systems.

University of Southampton J V

4-MANIFOLDS AND KIRBY CALCULUS

(Graduate Studies in Mathematics 20)

By R E. G and A!  I. S : 558 pp., US$65.00,

 0-8218-0994-6 (American Mathematical Society, Providence, RI, 1999).

The study of 4-dimensional manifolds reaches back to the beginning of the subject

of topology, yet it yields some of the most prominent open questions in this general

area. It is natural to see what one might call the ‘modern era’ in 4-manifold theory

as beginning in the early 1980s with Freedman’s work on topological 4-manifolds,

and the use of differential geometic methods, closely allied to particle physics, in the

smooth case. (Recall that a smooth manifold is one which is given by a collection of

charts glued together by C¢ maps; for a topological manifold one requires only that

the maps are continuous.) This latter development reached a fairly mature form in the

mid 1990s following the introduction of the Seiberg–Witten theory. The current

position can be summarised roughly as follows. First, thanks to Freedman, we have

an almost complete classification of topological 4-manifolds. Secondly, we have fairly

strong results about which topological 4-manifolds can support any smooth structure.

Thirdly, we have invariants for smooth manifolds which are usually not too hard to

calculate and whose general properties are quite well understood. Fourthly, we have

an enormous stock of examples of smooth 4-manifolds which are homeomorphic but

not diffeomorphic : otherwise said, topological 4-manifolds which carry inequivalent

smooth structures. In practice, this means that the manifolds in question have

isomorphic cohomology rings but different Seiberg–Witten invariants. The invariants

detect phenomena which are both specific to 4 dimensions and which rely essentially

on smoothness ; the main conclusion of Freedman’s work is that the topological
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theory in 4 dimensions runs parallel to the theory of ‘high-dimensional ’ manifolds

which was brought into fairly complete form in the 1960s and 1970s. When we ask

questions which go beyond these four areas of progress, we are stuck: we have no idea

of the full classification of smooth 4-manifolds, even in the simply-connected case. (A

special instance of this is the 4-dimensional smooth Poincare! conjecture.) Probably

the feeling among workers in the field is that the Seiberg–Witten invariants detect

only the tip of an iceberg, analogous to the Alexander polynomial invariant of knots

[1], but it seems that some quite new technique is needed to make any real headway.

The book under review provides a unique and comprehensive account of almost

all that is known about the topology of 4-manifolds and the existing techniques for

studying them. The central theme of the book is the Kirby calculus. This is a

procedure for manipulating handle decompositions, and its great virtue is that it

allows questions about 4-manifolds to be expressed in terms of diagrams, and hence

to a large extent visualised: Kirby calculus is the best way we have of ‘seeing’ 4-

dimensional topology. More precisely, a handle decomposition in any dimenion n

represents a manifold as a nested tower of subsets M
i
, each subset M

i+"
being

obtained from the previous one, M
i
, by attaching ‘k-handles ’, that is, sets of the form

Dk¬Dn−k, using a map from ¦Dk¬Dn−k to the boundary of M
i
. Here Dk denotes the

k-dimensional disc, so its boundary ¦Dk is a sphere, and ¦Dk¬Dn−k is a thickened

sphere. Handle decomposition is an important tool throughout geometric topology;

in some guise it lies at the heart of the high-dimensional theory mentioned above, and

in 3 dimensions it amounts to the notion of a Heegard splitting. In the 4-dimensional

case, one starts with a 0-handle which is just a 4-disc, and then attaches 1-, 2- and 3-

handles, finally capping off with a 4-handle to obtain a closed 4-manifold. The point

is that the boundary of the 4-disc is a 3-dimensional sphere, which can be represented

as R$ with a point at infinity, and the handles are specified (roughly speaking) by

drawing the attaching sets in ordinary 3-space. The most important questions involve

the 2-handles, which are attached along thickened circles, making up a link in 3-space.

The authors develop this material very thoroughly, and show how the technique can

be used to study an enormous range of concrete examples, covering essentially

everything which is known about 4-manifolds.

While the Kirby calculus, a technique from geometric topology, lies at the centre

of this book, the authors devote considerable space to other techniques. In particular,

they explore at length the topology of complex algebraic surfaces, and more generally

of symplectic manifolds. Interactions with complex geometry have always been

prominent in 4-manifold theory. (In fact, one might say that geometric topology, as

a serious mathematical subject, was born in the 19th century with the realisation

that the topology of 2-manifolds played a role in complex analysis and algebraic

geometry. From this point of view, the topology of complex surfaces is the next case

to look at.) Complex variables give a different way of visualising 4 dimensions, and

the marriage of the two points of view enhances each. Some of the material in the

book, on symplectic manifolds and Lefschetz fibrations, has not appeared before. In

other directions, the book contains a substantial discussion of the more standard

algebraic topology (bundle theory, and so on) relevant to 4-manifolds. There is also

an introduction to the Seiberg–Witten theory which, backed up by some of the

technical material in [2], for example, should be sufficient to give the reader a working

knowledge of this area.

This book is important and valuable in that it both gives a comprehensive and

accessible picture of an area which has developed rapidly in the past 20 years and also
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provides the reader with techniques to begin research in the field. The book is

pedagogically very strong, with many examples and exercises (including solutions to

selected exercises). The material will not go out of date, and however the field may

develop in the future, this will be an important reference for many years to come.

References
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Imperial College, London S. K. D

SPHERE PACKINGS

(Universitext)

By C Z : 241 pp., £30.50,  0-387-98794-0

(Springer, New York, 1999).

With the Kepler sphere packing conjecture apparently proven by Hales with help

from Ferguson, this is an appropriate time to collect together results about sphere

packings and see where we stand. The book under review does exactly that. It includes

proofs of all main results, plus others, except in cases where a proof is so long and

detailed that its inclusion is not practicable. Open problems and their status are also

discussed. What follows, after some definitions, is a brief description of what the

reader can expect.

For any convex body K and set X in Euclidean n-dimensional space, the

collection of translates KX¯²Kx :x `X ´ is a translative packing of K if no

two translates have overlapping interiors. If l is a positive real number and I
n
¯

²x¯ (x
"
,x

#
,… ,x

n
) : rx

i
r% 1}2´ is the n-dimensional unit cube, then the density of

such a packing is

δ(K,X )¯ lim sup
l!¢

card(XflI
n
) �(K )

�(lI
n
)

,

where card([) denotes a cardinal number and �([) denotes a volume. The translative

packing density of K is

δ(K )¯ sup
X

δ(K,X ).

If the lim sup and supremum are taken over only packings where X is a lattice, then

the supremum is denoted by δ*(K ) and called the lattice packing density of K. The

translative kissing number k(K ) of K is the maximum number of translates of K with

non-overlapping interiors that can be touching the boundary of K. If the translates

are restricted to those formed by points from a lattice, then the kissing number is

denoted by k*(K ) and called the lattice kissing number. Historically, the problems of

most interest have been concerned with finding the values of δ(S
n
), δ*(S

n
), k(S

n
) and

k*(S
n
) for the n-dimensional sphere S

n
.

Chapter 1 contains proofs of the results k(S
#
)¯k*(S

#
)¯ 6, δ(S

#
)¯ δ*(S

#
)¯

π}o12 and k(S
$
)¯k*(S

$
)¯ 12. Kepler’s conjecture that δ(S

$
)¯π}o18 is discussed,

including a description of the approach to its proof by the methods of Fejes To! th and



122  

Hsiang, and then by the method of Hales. Not surprisingly, Hales’ complete proof is

not given. Chapter 2 presents the connection between quadratic forms and lattice

sphere packing, and includes proofs of the results δ*(S
$
)¯π}o18, δ*(S

%
)¯π#}16

and δ*(S
&
)¯π#}(15o2). An outline of the ideas involved in establishing the densest

lattice sphere packings in dimensions 6, 7 and 8 is presented, but full proofs are

omitted. The same is done for the lattice kissing numbers for dimensions 4 to 9. The

densest lattice sphere packings for dimensions larger than 8 are unknown, as are the

lattice kissing numbers for dimensions larger than 9, with the exception of dimension

24. (Proofs by Bonnai and Sloane that k*(S
)
)¯ 240 and k*(S

#%
)¯ 196560 are given

in Chapter 9.)

Chapter 3 is concerned with lower bounds for packing densities δ(S
n
), and

includes a proof of the classic result of Minkowski and Hlawka, along with

improvements by others to their lower bound. It also includes proofs of the classic

work on density of lattice sphere coverings by Rogers and by Rogers, Few and

Coxeter. Chapter 4 takes up the interesting idea of the blocking number for a convex

body, which was introduced by Zong in 1994. The blocking number b(K ) of a convex

body K is the smallest number of non-overlapping copies of K that can be touching

the boundary of K, but which do not allow any additional non-overlapping copies to

touch the boundary of K. Numerous results are proven or just presented in this

chapter ; proofs of the results b(S
#
)¯ 4, b(S

$
)¯ 6 and b(S

%
)¯ 9 are given. Chapter 5

presents connections between codes and sphere packings, including descriptions of

the codes relevant to sphere packings. Chapters 6, 7 and 8 discuss upper bounds for

the packing densities δ(S
n
) and kissing numbers k(S

n
). These chapters describe the

work, including proofs, of many people, such as Blichfeldt, Rankin and Rogers. The

remaining chapters deal with important topics related to those already mentioned.

Their titles speak for themselves : 10: Multiple sphere packings; 11: Holes in sphere

packings; 12: Problems of blocking light rays ; and 13: Finite sphere packing.

The fact that this book is very readable and error-free indicates the care taken in

its preparation. It is accessible to graduate students or advanced undergraduates. I

also appreciated the biographical sketches of some of the mathematicians who have

made major contributions to the subject. The bibliography seems complete, and the

book will no doubt become a standard reference. It will certainly remain on my desk,

and I anticipate reaching for it many times.

Allegheny College, Meadville, PA R E. H

GEOMETRIC NONLINEAR FUNCTIONAL ANALYSIS, Volume 1

(American Mathematical Society Colloquium Publications 48)

By Y B and J L : 488 pp., US$65.00,

 0-8218-0835-4 (American Mathematical Society, Providence, RI, 2000).

This is a fascinating monograph, containing a wealth of information on the one

hand and motivating further research on the other. The motivational success has been

already proven by the appearance of results by several young mathematicians who

solved problems stemming from its preliminary version. The unifying theme of the

book is ‘ the study of uniformly continuous and, in particular, Lipschitz functions

between Banach spaces ’. This programme distinguishes it from a number of other
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texts that understand ‘nonlinear functional analysis ’ as the study of questions related

to nonlinear differential equations. By carefully avoiding an overlap with this

direction (and so also with texts on general fixed-point theory), the authors have been

able to cover many aspects of the development that have not been treated in a similar

form before. However, a number of important subareas have not made it to this first

volume, so we must wait for the second volume to see an accessible account of them.

It is impossible to give a detailed account of all important points that are treated

here, so the following account just highlights some of them. The book starts with

uniformly continuous and Lipschitz retractions, extensions and selections. After basic

results (Kirszbraun’s theorem, Michael’s selection theorem, etc.), it moves to detailed

study of various related problems, such as approximation by functions with

prescribed modulus of continuity, precise estimates of the modulus of continuity of

the nearest-point map, and a description of Banach spaces E for which every

Lipschitz mapping of a subset of E to E may be extended to the whole space

preserving the Lipschitz constant.

A chapter on fixed points is restricted to the connections between fixed-point

theory and the geometry of Banach spaces (so it includes only the main classical fixed-

point theorems). From this point of view, the main result is a construction, for any

non-compact set C, of a Lipschitz map f :C!C with no (even approximate) fixed

points. As a corollary, one obtains, in any infinite-dimensional Banach space, the

contractibility of the sphere or existence of a Lipschitz retraction of a ball to its

boundary. This is followed by a detailed discussion of challenging problems around

the existence of fixed points for non-expansive mappings.

Linearisation of mappings is one of the most important tools in nonlinear

analysis. The authors enter this subject via its best understood case of differentiability

of convex continuous functions, where for Ga# teaux differentiability even a complete

description of non-differentiability sets (due to Zajı!c) ek) is known, and for Fre! chet

differentiability the results, although not so complete, also appear to be satisfactory.

Another reasonably well understood case is that of differentiability of Lipschitz

mappings of the real line to a Banach space, which is closely related to and may serve

as a definition of the Radon–Nikody! m property (RNP). A chapter is devoted to those

results on the RNP that bring it into the present context. In particular, the distinction

between differentiability and affine approximation of Lipschitz mappings of the real

line to a Banach space X is traced to that between the RNP and the property that the

unit sphere of X does not contain ε dyadic trees, thus shedding new light on the

examples due to Bourgain and Rosenthal.

One may expect that, analogously to the classical results of Lebesgue and

Rademacher, Lipschitz functions between reasonable spaces are differentiable almost

everywhere with respect to a suitable notion of null sets. A chapter is therefore

devoted to the discussion of various notions of null sets, such as Haar null sets (as

defined by Christensen), cube null sets, Gaussian null sets and Aronszajn null sets,

and includes the remarkable recent result of Cso$ rnyei that the last three notions

coincide. Two arguments leading to a generalisation of Rademacher’s theorem to

Ga# teaux differentiability of Lipschitz mappings between infinite-dimensional spaces

are given. It is also shown that the situation is considerably more complicated if we

consider Fre! chet differentiability of real-valued Lipschitz, or even convex, functions.

As a natural application of linearisation techniques, one should be able to answer

the ‘Lipschitz isomorphism problem’, that is, to show that reasonable (say, separable

and reflexive) Lipschitz equivalent Banach spaces are linearly equivalent. Similarly,
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one should be able to answer the corresponding problems for Lipschitz embeddings

and Lipschitz quotients. (The rather recent notions of Lipschitz and uniform

quotients are treated here for the first time in book form.) However, known

linearisation techniques are not strong enough to provide satisfactory answers (with

the exception of Lipschitz embeddings), and indeed many important questions,

including the isomorphism problem itself, are still open, although using also other

techniques, including those of linear theory, the isomorphism problem has been

answered for many classical spaces. The need for better understanding of linearisation

and differentiability techniques is illustrated, for instance, by the fact that every

Banach space is Lipschitz equivalent to a subset of c
!
, by an example of a Lipschitz

isomorphism of a separable Hilbert space onto itself whose derivative fails to be an

isomorphism at many points, or by an example of non-separable Lipschitz isomorphic

spaces that are not linearly isomorphic.

The study of uniform isomorphisms, embeddings and quotients considerably

differs from that of Lipschitz ones, because no direct use of differentiability

techniques is available. As an illuminating example, one may use the result that the

(quasi-normed) spaces that embed uniformly into a Hilbert space are precisely those

that are linearly isomorphic to a subspace of the space of measurable functions on

some measure space, or that the unit sphere of a very large class of spaces is uniformly

isomorphic to the unit sphere in a Hilbert space. On the other hand, for uniform

isomorphisms defined on the whole space, ultraproduct techniques lead to Lipschitz

isomorphisms, and one may use the results from previous chapters to obtain

information on the linear structure of the spaces. Together with other methods

(among which at least Gorelik’s principle should surely be mentioned), this shows

that in many classical situations uniform isomorphism implies linear isomorphism,

but that this is far from being true in general : one can even find a Banach space which

is uniformly isomorphic to exactly two (linearly different) Banach spaces.

Two chapters are devoted to important questions concerning oscillation of

uniformly continuous functions on unit spheres in finite- and infinite-dimensional

spaces. The results start from the fundamental theorem of Dvoretzky, and lead to an

accessible account of many of the recent major developments, such as the solution of

the distortion problem due to Odell and Schlumprecht, or the results of Gowers and

Maurey.

Mappings close to isometries are well known from the pioneering study of

F. John which led to the introduction of BMO functions. The study presented here

indicates which of the natural questions find their answers in general Banach spaces,

and which need one to go to finite-dimensional Euclidean spaces. A special chapter

is devoted to the well-understood case of global surjective near isometries.

The study of quasi-linear functions

s f(xy)®f(x)®f(y)s¯O(sxssys)

is related to that of twisted sums of Banach spaces, for which a natural setting is that

of quasi-Banach spaces. In particular, quasi-linear functions may be used to construct

non-trivial twisted sums of a Hilbert space with itself ; these are then used, for

example, to construct Banach spaces having quite unexpected properties.

The final chapter is devoted to questions related to Hilbert’s fifth problem in the

setting of groups modelled on an infinite-dimensional Banach space; the subject is

related to the previous themes via the need for uniform continuity of the group

operations.
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The promised second volume should contain results on Fre! chet differentiability of

Lipschitz functions on Banach spaces, study Lipschitz maps from a discrete point of

view, and explain connections with analytic functions. Surely something to look

forward to!

University College London D P

STRONG SHAPE AND HOMOLOGY

(Springer Monographs in Mathematics)

By S M) ! : 489 pp., £55.00,  3-540-66198-0 (Springer, Berlin, 2000).

As a postgraduate, I attended a British Mathematical Colloquium, and there met

other postgraduates. Of course, one of the first questions asked was: ‘What is your

research area? ’ When informed that I was studying the homotopy theory of general

spaces (such as compact metric spaces with no restrictions on their local behaviour),

a fellow postgraduate from another university asked: ‘Why on earth should anyone

want to look at the algebraic topology of spaces that are not manifolds or at least

CW-complexes? ’ I was unable to formulate an answer that might have attempted to

satisfy him. My answer should have been a question: ‘How is a gi�en space specified? ’

It may arise as a manifold, but it may also be given as the spectrum of a C*-algebra

obtained from some analytic problem, as a space of leaves of a foliation, as an

attractor of a dynamical system, or as a fractal given by some iterated function

system. In these cases, the apparatus of ordinary algebraic topology can prove

powerless ! The space as given is extremely unlikely to have a CW-complex structure.

Yet experience from the algebraic topology of manifolds and complexes showed that

subtle geometric and ‘analytic ’ properties of such a space are detectable via the

invariants that modern homotopy and homology theory provide. How can one try to

extend the methods of homotopy and homology theory to such spaces?

The question has, of course, a long history, with names such as C) ech, Vietoris and

Alexandroff involved in the late 1920s in defining homological invariants for compact

spaces. Although quite well behaved, C) ech homology theory did not yield exact

sequences in general, so this made any attempt at calculation much more difficult. The

problem was that the definition used the inverse limit, and that did not preserve

exactness. In 1940, Steenrod published a paper giving a definition of a different

homology construction for metric compacta which did give exact sequences. This was

a strong homology in the sense of this book.

The theory of inverse systems was first used by Lefschetz in the 1930s. He

discussed their properties and revealed some of the difficulties in their use. A student

of his, Christie, published work (1944) on a homotopy theory parallel to C) ech
homology. For metric compacta, he also introduced a stronger form of his theory

which was a type of strong shape theory. Christie’s work lay fallow for 24 years until

Borsuk (1968) developed shape theory. This was closely related to Christie’s C) ech-

type homotopy theory, and like that suffered from the same weakness as C) ech
homology, namely lack of exactness. Finally, in about 1973, various shape theorists

realised that shape theory could be strengthened by retaining more of the data. All

of the C) ech-style theories work by using inverse systems of polyhedra to approximate

the spaces being studied, but – and it is a big ‘but’ – these are often inverse systems
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in the homotopy category of polyhedra. For strong shape, one works not with

proHo(Top), that is, with inverse systems in this homotopy category, but with

Ho(proTop), a homotopy category of inverse systems of spaces, and therein lies the

technical difficulty that makes this book necessary. This category Ho(proTop) has a

beautiful interpretation in terms of inverse systems, and homotopy coherent

mappings of inverse systems, but to work with homotopy coherence you need to take

a lot of combinatorial care of your defining data.

This book takes the reader step-by-step through the detailed treatment of strong

shape and the related strong homology. The author has taken a lot of care in his

description of coherence, and has succeeded in giving a treatment that is, in many

ways, as elementary as it can be. There are pages of detailed formulae, but that is

because the very essence of homotopy coherence is that, for instance, it keeps

information on why two maps are homotopic (by specifying the homotopy) rather

than merely asking that a homotopy exist, so those homotopies (and the homotopies

between homotopies, etc.) have to be explicitly constructed.

The book is very well organised. It is divided into four parts : I : Coherent

homotopy; II : Strong shape; III : Higher derived limits ; and IV: Homology groups.

The content of the first two of these is as suggested by their titles. The third part may

need a little more description. The key weakness with the construction of C) ech
homology was that it used inverse limits, and they destroy exactness. To measure the

lack of exactness of Lim on a given inverse system, one uses its derived functors

Lim(i). Part III contains a well-written, self-contained exposition of the theory of the

derived functors of Lim. The material has been collected with great care, and again

is ‘elementary’ and approachable without a lifetime of preparatory reading.

The algebraic results of Part III are used in Part IV to show the dependence of the

various strong homology groups on subtle topological properties of the spaces. Some

of this material appears here for the first time in a book.

Formulae are explicitly given. This can be daunting if you try to ‘dip’ into the

book, but their motivation and geometric interpretation are clear if the earlier

sections on homotopy cohernt systems are tackled first.

Does the book answer that question asked of me? It does not. There is a lot of

active research going on in this area, but there are still many problems concerned with

linking the data, say, for an iterated function system or dynamical system to the

methods used here. There clearly is a great chance of an important link-up, and the

author promises that a forthcoming survey article by himself and J. Segal will cover

some of these developing links. I look forward to seeing it.

Finally, is there any adverse criticism to be made about the book? To that

question I have to reply that although the historical notes at the end of each chapter

were useful, I did not always agree with their content. Some very interesting early

pieces of work were omitted, and various links were played down. That, however, is

a minor criticism. This is a very well-written book, dealing with an important area of

topology. The theory is hard, but it is tackling very difficult problems at the interface

between (algebraic) topology and analysis. It is a very important addition to the

literature.

University of Wales, Bangor T P
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