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Figure 26: Effect of membrane bending rigidity on the deformation of a capsule with
Skalak membrane considering σr “ 0.1 and Ca “ 0.45. Continuous curve represents
shape obtained from the boundary integral simulation without considering the effect of
bending rigidity and the dashed curve represents the same with κb “ 0.001 at t “ 196.

Appendix B. Supplementary information

B.1. Importance of incorporating membrane bending

In the present study, the effect of bending rigidity is clearly demonstrated in fig. 26.
Incorporating bending forces eliminate the formation of wiggles. However, it should be
mentioned that for deformations with nominal curvatures, it was observed that the results
of simulations with and without bending did not have significant differences.

B.2. Optimization and convergence of the numerical code

B.2.1. Number of node points optimization

Error estimation in the volume inside the capsule p∆vq is conducted for different
number elements (number of node points+1) over the half arc length (north pole-south
pole) at σr “ 10 and σr “ 0.1. Analysis has been done at the low deformation, Ca “ 0.25
at σr “ 10 (table 2), as well as in large deformation limits, Ca “ 1 at σr “ 10 (table 3)
and Ca “ 0.45 at σr “ 0.1 (table 4). Along with the change in internal volume, the
required CPU times per iteration for different number of elements are reported. The
computations were done on Intel 5th generation i7 processor. From tables 2 and 4 it
can be observed that with the increase of the number of elements the change in internal
volume reduces except the results reported in table 3, which is due to the formation of
sharp corner at the intermediate large deformation adding error in the measurement of
higher order derivatives and thereby in the bending calculation, though the impact is
insignificant.

In the current analysis on the deformation of an elastic capsule in DC electric field,
the half arc length is divided into 60 elements which keep the change in volume within
a considerable limit of ∆v ă 0.1% for both the cases, σr “ 0.1 and 10. Also, as the
increase in the number of elements does not improve much in the accuracy of the results
but it significantly increases the computational time, we chose to carry out the numerical
analysis with 60 elements.
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Number of elements Percent change in volume, ∆v (%) CPU time required per iteration psq

40 0.142 0.0236
50 0.075 0.0349
60 0.046 0.0532
70 0.031 0.0709
80 0.023 0.0924
90 0.017 0.1159
100 0.014 0.1428

Table 2: Percent change in internal volume of the capsule to reach the steady-state
deformation and CPU time required per iteration as a function of number of elements at
Ca “ 0.25 and σr “ 10

Number of elements Percent change in volume, ∆v (%) CPU time required per iteration psq

40 0.0642 0.0238
50 0.0652 0.0351
60 0.0661 0.0531
70 0.0667 0.0707
80 0.0664 0.0923
90 0.0665 0.1162
100 0.0668 0.1425

Table 3: Percent change in internal volume of the capsule to reach the steady-state
deformation and CPU time required per iteration as a function of number of elements at
Ca “ 1 and σr “ 10

Number of elements Percent change in volume, ∆v (%) CPU time required per iteration psq

40 0.244 0.0248
50 0.132 0.0354
60 0.084 0.0527
70 0.059 0.0692
80 0.036 0.0923
90 0.024 0.1154
100 0.017 0.1426

Table 4: Percent change in internal volume of the capsule to reach the steady-state
deformation and CPU time required per iteration as a function of number of elements at
Ca “ 0.45 and σr “ 0.1

B.2.2. Convergence test

Convergence of the change in internal volume and deformation of a capsule

A numerical computation with 120 elements and ∆t “ 0.0001 for the deformation of
an elastic capsule at Ca “ 0.45 and σr “ 0.1 is considered as the reference case in which
the change in volume is ∆v “ 0.0006% and degree of deformation is DD “ ´0.50313 at
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Number of elements Percent change in volume, ∆v (%) Degree of deformation, DD

40 0.0202 -0.5034
50 0.0196 -0.5034
60 0.0189 -0.5034
70 0.0184 -0.5034
80 0.0183 -0.5033
90 0.0182 -0.5032
100 0.0182 -0.5032

Table 5: Estimation of change of volume p∆vq and degree of deformation pDDq as
function of number of elements at t “ 50.

Number of elements Percent change in volume, ∆v (%) Degree of deformation, DD

40 0.0202 -0.4291
50 0.0194 -0.4288
60 0.019 -0.4288
70 0.0186 -0.4288
80 0.0185 -0.4287
90 0.0184 -0.4287
100 0.0183 -0.4287

Table 6: Estimation of change of volume p∆vq and degree of deformation pDDq as
function of number of elements at t “ 75.

t “ 50 and ∆v “ 0.0005% and DD “ ´0.42868 at t “ 75. The change in volume and the
degree of deformation of a capsule as a function of number of elements at Ca “ 0.45 and
σr “ 0.1 considering ∆t “ 0.01 at t “ 50 and 75 are given in tables 5 and 6, respectively.
In both the cases time horizons (t “ 50 and t “ 75) are selected when the capsule attains
large intermediate deformations. From the analysis, it is justified that the results are
fairly converged with respect to change in the number of elements as well as the time
step.

Convergence of transmembrane potential of the interface

The transmembrane potential pφmq of the interface obtained from the numerical
calculations with different number of elements p40, 60, 80 and 100q are compared with the
obtained φm for the reference case (number of elements=120 and ∆t “ 0.0001) at t “ 50
(fig. 27a) and t “ 75 (fig. 27b). In figs. 27a and 27b, very high accuracy in the calculation
of φm is observed for any number of considered elements. The convergence tests for the
deformation of a capsule on the change in volume p∆vq, degree of deformation pDDq and
the transmembrane potential pφmq of the membrane as a function of number of elements
suggest that the selection of 60 elements over the half arc length (north pole-south pole)
is justified.

B.3. Dynamics of capsule with neo-Hookean membrane

Capsules with a neo-Hookean membrane show very similar intermediate shapes
(figs. 28a to 28f) as observed for capsules with a Skalak membrane (figs. 6a to 6f)
at Ca “ 0.25 and σr “ 0.1. From the simulated shapes it can be observed that a
neo-Hookean capsule passes through the squaring (figs. 28d and 28e) to a steady-state
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Figure 27: Transmembrane potential of the interface (θ “ 0 at north pole and θ “ π at
south pole) for the computation with different numbers of elements.
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Figure 28: Shape evolution of a capsule with neo-Hookean membrane at σr “ 0.1 for
Ca “ 0.25.

prolate shape (fig. 28f). Just bellow the critical capillary number for breakup (Ca “ 0.29)
a neo-Hookean capsule shows similar intermediate shapes (figs. 29a to 29h) at σr “ 0.1
as observed with Skalak capsule (figs. 7a to 7h) at Ca “ 0.45 and σr “ 0.1.

Figure 30 shows shapes during the deformation of neo-Hookean capsule at small
capillary number (Ca=0.25) and σr “ 10, which are similar to the case of a Skalak
capsule at same capillary number (fig. 4) except relatively larger deformation (fig. 20).
At high capillary number, Ca “ 0.59 (fig. 31) a neo-Hookean capsule undergoes very large
intermediate deformation (fig. 31c) without forming any sharp corner (observed in the
case of a Skalak capsule deformation at Ca “ 2, fig. 12c) and while relaxing back, unlike
a Skalak capsule at large deformation (fig. 12), it shows prolate shapes with P2pcos θq
type of perturbation (figs. 31d and 31e).
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Figure 29: Shape evolution of a capsule with neo-Hookean membrane at σr “ 0.1 for
Ca “ 0.29.
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Figure 30: Shape evolution of a capsule with neo-Hookean membrane at σr “ 10 for
Ca “ 0.25.

B.4. Transmembrane potential, normal and tangential electric stresses obtained from
AET

Solutions for the Transmembrane potential, normal and tangential electric stresses
obtained from AET are complicated. For the case-specific (considering Gm “ 0, Cm “ 50,
εr “ 1) expressions for transmembrane potential, normal and tangential electric stresses
are given below.
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Figure 31: Shape evolution of a capsule with neo-Hookean membrane at σr “ 10 for
Ca “ 0.59.

B.4.1. For the case of σr “ 10

φm “ p1.5´ 0.022e´4.06t ´ 1.478e´0.032tq cos θ (B 1)

τn “ Carp0.799´ 3.833e4.027t ` 3.034e8.054tq cos2 θ ` p0.0166` 1.095e4.027t

´1.106e4.059t ´ 0.736e8.054t ` 1.856e8.086t ´ 1.125e8.119tq sin2 θse´8.12t (B 2)

τt “ Cap1.665´ 3.285e4.027t ` 2.213e4.059t ` 3.12e8.054t

´3.713e8.087tqe´8.12t cos θ sin θ (B 3)

B.4.2. For the case of σr “ 0.1

φm “ p1.5´ 0.0073e´0.703t ´ 1.492e´0.0018tq cos θ (B 4)

τn “ Carp0.28` 0.722e0.702t ´ 1.002e1.403tq cos2 θ ` p´0.003´ 0.632e0.702t

`0.645e0.703t ` 1.01e1.403t ` 0.105e1.405t ´ 1.125e1.408tq sin2 θse´1.407t (B 5)

τt “ Cap0.549´ 1.083e0.702t ´ 1.29e0.703t ` 2.034e1.403t

´0.21e1.405tqe´1.407t cos θ sin θ (B 6)


