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In this Supplementary Material, we briefly discuss the hybrid granular dynamics (GD)-

computational fluid dynamics (CFD) code that is used in the numerical simulations. The

GD code calculates the trajectories of the spherical particles from Newton’s law, with

the particle-particle interactions being given by a 3D soft sphere collision model includ-

ing tangential friction. The CFD code calculates the gas phase by evaluating the full

Navier-Stokes equations by a finite difference method. The interaction of the gas with the

resonating plate is modeled by the immersed boundary method. We next describe each

of these elements in more detail.

Particle phase The linear motion of a single spherical particle a with mass ma

and coordinate ra is governed by Newton’s equations:

ma

d2ra

dt2
= Fgrav,a + Fcontact,a + Fplate,a + Fdrag,a , (1)

where Fgrav,a = mag is the gravitational force, Fcontact,a is the sum of the individual

contact forces exerted by all other particles in contact with the particle a, and Fplate,a
represents the collision of particle a with the resonating plate. The contact force is divided

into a normal and a tangential component:

Fcontact,a =
∑

b∈contactlist

(Fn,ab + Ft,ab) . (2)

For the calculation of Fn,ab and Ft,ab, we use a 3D linear spring/dashpot type of soft

sphere collision model [2] along the lines of Cundall and Strack [1]. The particle-plate

collisions are modeled in the same way as the particle-particle interactions. Finally, in

Eq. (1), Fgas,a represent the gas-particle interaction force (or drag force). In this work,

we have chosen simple Stokes drag.

The angular velocity ωωωa of particle a is calculated from:

Ia
dωωωa

dt
= Ta ,

where Ia =
2

5
maR

2

a is the moment of inertia (with Ra the radius of particle a), and Ta the

torque, which depends only on the tangential component of the individual contact forces:

Ta =
∑

b∈contactlist
(Ranab × Ft,ab) ,

where nab is the normal unit vector from particle a to b.

Gas Phase The gas flow is governed by the conservation equations for mass and

momentum:
∂ (ρg)

∂t
+∇ · ρgu = 0 , (3)

∂ (ρgu)

∂t
+∇ · ρguu = −∇p−∇ · τττ + ρgg + sibm , (4)
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Figure 1: Horizontal flow field at t = 1

2
/f s over a vertically vibrating flexible bottom plate.

where p is the gas phase pressure, τττ the viscous stress tensor, sibm the source term for

the momentum exchange with the plate. The pressure and gas-phase density are linked

by the ideal gas law. In principle Eq. (4) should also contain the force density arising

from the interaction with the solid particles. However, as explained in the main text, for

computational reasons we have not considered the influence of the particles on the flow

field, which is expected to be very small in any case. In order to numerically solve eqs.

(3)- (4), a first-order-accurate semi-implicit method is used to discretize the momentum

equations in time. The pressure and the particle force contribution are treated implic-

itly, while the viscosity and convection contribution are treated explicitly. A staggered

Cartesian 3D grid (cell size δl) is used for the spatial discretization. The scalar variables

(p and ρg) are defined at the cell center, whereas the velocity components are defined at

the cell faces. The convective fluxes are computed using a second-order flux delimited

Barton scheme [3, 4], where the viscous and pressure terms are calculated by a central

difference representation. The resulting set of equations are solved iteratively, by the

SIMPLE algorithm, where the pressure is adapted via a Newton-Rhapson procedure until

mass conservation is achieved. Details of the procedure can be found elsewhere [2].

Gas-plate interaction In previous studies we have used a simplified method to

model gas flow in vibrated beds [7], where the vibrating bottom moves through the compu-

tational cell, so that it cuts the cell, which has to be taking into account in the computional

procedure. In the present paper, we have used a more sophisticated and flexible approach,

where the interaction of the gas phase with the resonating plate is modeled with the im-

mersed boundary (IB) method. In this method, the resonating surface is ”bespeckled”
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Figure 2: (top) Analytical and simulated velocity ūx at x = L/2 (dashed line in Fig. 1). (bottom)

Simulated velocity ux at x = L/2 and y = L/4 (indicated by the black X in Fig. 1). For both numerical

methods, the no slip condition is used at the top and bottom boundary, resulting in a thin boundary

layer. With the immersed boundary (IB) method, the flow field is also calculated underneath the vibrating

bottom plate, indicated by the plus markers located at z < 0.
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with markerpoints, with a surface density of the order of a few points per δl2, where δl

is the grid size of the CFD model. Each of these marker points exerts a force on the

fluid, and the corresponding force density is included in the hydrodynamics equations of

the gas-phase, and thus also included the CFD scheme. The magnitude of this force can

be tuned such that the gas-phase velocity vanishes at the location of the marker point,

thereby modeling ”no-slip” boundary conditions. The IB method has been widely used

to study fluid-structure interaction and was pioneered by Peskin [5] to investigate cardiac

flow problems. Subsequently, the method has been extended to the flow around rigid

bodies. The implementation that we adopt is along the lines of Uhlmann [6], where we

have also included an extra iteration loop to improve the match between the actual and

desired velocity at the location of the plate.

In order to validate the implementation, we have simulated a container with di-

mensions 150× 150× 5 mm3 which is divided in 30× 30× 50 CFD cells (L×L×H). For

the top of the container, a no-slip boundary is used while periodic boundaries are used

for all the vertical walls. The vertical position z of the bottom plate at any point (x, y)

is given by:

z(x, y, t) = a sin(ωt) sin
2πx

L
sin

2πy

L
, (5)

with ω = 2πf = 2π 200 rad/s and a = 2.5 · 10−5 m (corresponding to a dimensionless

acceleration Γ = 4). The horizontal velocity of the gas, averaged over the height H , can

be evaluated analytically and is equal to (see Fig. 1):

ūx = Raω cos(ωt) cos
2πx

L
sin

2πy

L
, (6)

ūy = Raω cos(ωt) sin
2πx

L
cos

2πy

L
, (7)

where the amplitude R has yet to be determined. This amplitude can be derived with

a continuum and symmetry consideration: All the air that is displaced vertically by the

resonating plate within the hatched area in Fig. 1, must flow horizontally through the

area indicated by the thick black line, which results in R = L/(4πH). Figure 2 (top)

shows the analytical and simulated velocity ūx at x = L/2 (dashed line in Fig. 1). For the

cell cut method, the agreement with the analytical solution is excellent. For the immersed

boundary method, the agreement using a ∆t of 1 · 10−5 s is very poor. Decreasing the

time step to 1 · 10−7 s greatly improves the agreement. However, a similar agreement can

also be obtained by using a ∆t of 1 · 10−6 s and 4 IBM iterations or a ∆t of 1 · 10−5 s and

25 IBM iterations (not shown in Fig. 2). Note that for the simulations described in this

paper, we have chosen a much finer grid; it was found that a timestep of 2 · 10−5 s with

10 iterations gave sufficiently accurate results.

The simulated velocity ux as a function of z at x = L/2 and y = L/4 (black X in

Fig. 1) is shown in Fig. 2 (bottom). Again we find that the cell-cut method and the IB

method give comparable results, provided that the timestep is sufficiently small.
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