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Supplementary File  

 

Phenotypic data 

 

Test-day records obtained after the 5th day of production were considered and only 

lactations with a duration of more than 90 days were maintained. The %F and %P were 

obtained as the mean of monthly records per lactation. The contemporary groups were 

formed by the concatenation of herd and year and season of calving (October-March and 

April-September). The restrictions applied were that each contemporary group should 

contain a minimum of four animals and the record of the traits should be ± 3 standard 

deviations of the mean of the group. Table 1 shows the descriptive statistics of the data.  

A repeatability animal model was used for all traits. The variance components 

(Table 2) were estimated by the restricted maximum likelihood method in single-trait 

analysis using the REMLF90 program (Misztal, 2005). The model included the 

contemporary groups as fixed effects, age of cow at calving as covariate (linear and 

quadratic), and additive genetic, permanent environmental and residual effects as random 

effects.  

 

Genome-wide association analysis using information from genotyped and non-

genotyped animals (ssGWAS)  

 

The general model used for estimate breeding values (GEBVs) for the traits can 

be written in matrix form as: 

 

 

where y is the vector of observations for each trait; X is the incidence matrix for fixed 

effects; β is the vector of fixed effects; Z is the incidence matrix for random additive 

genetic effects; a is the vector of random additive genetic effects assuming a ~ N (0, 

H𝜎𝑎
2), where H is the matrix that combines the pedigree-based relationship matrix and 

genomic relationship matrix and 𝜎𝑎
2 is the additive genetic variance; W is the incidence 

matrix for random permanent environmental effects; p is the vector of random permanent 

environmental effects, and e is the vector of random residual effects. 

eWpZaXy  
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The combination of the traditional relationship matrix (A) and the genomic 

relationship matrix (G) resulted in a new matrix, called H-1 (Aguilar et al., 2010):  

H−1 = A−1 +  [
0 0
0 G−1 − A22

−1] 

where A-1, G-1 and A-1
22 are, respectively, the inverse of the traditional relationship matrix, 

the inverse of the genomic matrix and the inverse of the relationship matrix between 

genotyped animals based only on pedigree. 

The genomic matrix was obtained according to Vanraden (2008):  

G =
ZZ′

2 ∑ pj(1 − p)m
j=1

 

where Z is the subtraction of M – P, where M is the matrix of genotypes, with the columns 

representing the markers and the rows the animals, and P is the frequency matrix of the 

second allele pj, expressed as 2pj.  

The SNP effects were obtained from the GEBVs of genotyped animals in an 

iterative manner using the postGSf90 program of the BLUPF90 family (Misztal et al., 

2002). Followed by the preGSf90 and BLUPF90 programs, postGSf90 calculates the 

effect of SNPs as described by Wang et al. (2012) using different weights in the genomic 

relationship matrix, thus permitting the application of different weighting factors for the 

SNPs. The equation used to calculate the SNP effects can be written in matrix form as: 

û = DZ′[ZDZ′]−1âg  

where û is the vector of the effect of each SNP; D is the diagonal matrix containing 

weighting factors for the SNP effect; Z is the matrix of genotypes, and âg is the vector of 

predicted breeding values for genotyped animals. 

In the present study, two iterations were performed to estimate the SNP effects. 

In the first iteration, weighting factors equal to one were assumed, which were calculated 

as a function of the squared effects of the SNPs and allele frequencies and used in the 

second iteration. According to Wang et al. (2014), weighting is important to identify 

regions of larger effect on a trait, i.e., increasing the weights attributed to large-effect 

SNPs and reducing the weights attributed to small-effect SNPs.  

The variance of each SNP was calculated by multiplying the squared effect of 

SNP i (û𝑖
2) by 2piqi, where pi is the frequency of the second allele of SNP i and qi is (1- 

pi) (Zhang et al., 2010). The percentage of genetic variance explained by each SNP was 

calculated as described by Wang et al. (2014): 
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𝑉𝑎𝑟(𝑎𝑖)

𝜎𝑎
2

 x 100% 

where ai is the breeding value of each region with only one SNP and 𝜎𝑎
2 is the total genetic 

variance. The 10 SNPs explaining the highest percentage of additive genetic variance 

were selected for the investigation of genes. 

 

Table 1. Descriptive statistics of milk yield (MY) and fat (%F) and protein (%P) 

percentage of Murrah buffalo cows. 

Trait N Mean Standard 

deviation 

CG 

MY (kg) 10,507 2,012.80 697.54 169 

%F 4,545 6.63 1.01 49 

%P 4,542 4.29 0.29 49 

N = number of animals, CG = contemporary group. 

 

Table 2. Additive genetic (σa
2), permanent environmental (σpe

2) and residual variance 

(σe
2), heritability (h2) and repeatability (r) obtained for milk yield (MY) and fat (%F) 

and protein (%P) percentage of Murrah buffalo cows. 

Trait σa
2 σpe

2 σe
2 h2  r 

MY 75,670 87,550 184,900 0.22 0.47 

%F 0.1666 0.1817 0.4447 0.21 0.44 

%P 0.0153 0.0177 0.0389 0.21 0.46 

 


