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Abstract

This document contains complementary material of section 6 of the article

“Marshall-Olkin Distributions, Subordinators, Efficient Simulation, and Ap-

plications to Credit Risk”. In particular, we provide the time-inhomogeneous

extensions of Theorems 1 and 2 of the main document. These results are given

in Theorems 1 and 2 where Lévy subordinators are replaced with additive

subordinators. We also present additional extensions to the MO distribution

which incorporate stochastic dynamics and extend the traditional default

intensity factor model.
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Appendix A. Additive Subordinator Construction

We now consider a time-inhomogeneous extension of Marshall-Olkin’s fatal shock

construction. As in section 4, consider a set of n components subject to failure, and

let Υ = {1, 2, · · · , n} be the index set indexing the n components. With each non-

empty subset Θ = {i1, · · · , ik} ⊆ Υ with cardinality |Θ| = k ≤ n we now associate a

time-inhomogeneous Poisson process ÑΘ
t with the time-dependent arrival rate λΘ(t),

a non-negative Borel function satisfying
∫ t

0
λΘ(u)du <∞ for all t ≥ 0. A fatal shock of

type Θ arrives at the first jump time XΘ = inf{t ≥ 0 : ÑΘ
t > 0} of the inhomogeneous

Poisson process ÑΘ
t , which results in the simultaneous failure of all components with

indexes in the set Θ. We set λ∅ ≡ 0 so that Ñ∅t ≡ 0 and X∅ ≡ ∞. Let τi denote

the failure time of the ith component (default time of the ith obligor in credit risk

applications). Then τi = min{XΘ : i ∈ Θ}, for i = 1, · · · , n. The joint distribution

of lifetimes (τ1, · · · , τn) is called the time-inhomogeneous Marshall-Olkin multivariate

exponential distribution with time dependent parameters {ΛΘ
t ,Θ ⊆ Υ}. From Eq. (4.1)

it follows that the joint survival function of lifetimes is given by:

P(τ1 > t1, · · · , τn > tn) = exp
(
−
∑
Θ⊆Υ

ΛΘ
tΘ

)
, with tΘ := max{1Θ(1)t1, · · · ,1Θ(n)tn},

where 1Θ(i) = 1 (0) if i ∈ Θ (i /∈ Θ), ti ≥ 0, and ΛΘ
t =

∫ t
0
λΘ(u)du.

Moreover, as in section 4, it follows that for any non-empty subset Θ ⊆ Υ the

probability that all components with indexes in Θ survive until time t > 0 is: P(τΘ >

t) = e−
∫ t
0
gΘ(u)du, where τΘ is the time of the first failure in the set of components with

indexes in the set Θ, τΘ := τi1 ∧ · · · ∧ τik , and

gΘ(t) =
∑

Ξ⊆Υ: Ξ∩Θ6=∅

λΞ(t) ≡
∑
Ξ⊆Υ

λΞ(t)−
∑

Ξ⊆Θc

λΞ(t), t ≥ 0, (A.1)

and, in particular, g{i}(t) =
∑

Θ⊆Υ:i∈Θ λ
Θ(t). Clearly, gΘ(t) is a non-negative function

satisfying
∫ t

0
gΘ(u)du <∞, for all t ≥ 0. A time-inhomogeneous extension of the fatal

shock construction leads to an extension of the Marshall-Olkin distribution MOn(λ(t))

parameterized by 2n−1 non-negative time-dependent intensities λΘ(t) or, equivalently,

by the 2n − 1 non-negative functions gΘ(t) related to the intensity parameters λΘ(t)
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by Eq.(A.1). It can be inverted to express λ in terms of g in a similar way as in

Lemma 4.1.

Lemma 1. The intensity parameters λ(t) can be expressed in terms of the parameters

g(t) for all non-empty subsets Θ by:

λΘ(t) =
∑
Ξ⊆Θ

(−1)|Θ|−|Ξ|+1gΞc

(t), (A.2)

where |Ξ| and Ξc denote the cardinality and the complement of the set Ξ in Υ, respec-

tively, and the sum in Eq.(A.2) is over all subsets of Θ, including the empty set.

It is straight forward to extend our subordination construction of MO distributions

to an additive subordinator construction of MOn(λ(t)) distributions.

Theorem 1. (Additive subordinator construction) Let Ei be n unit-mean independent

exponential random variables and T be an n-dimensional additive subordinator inde-

pendent of all Ei. Define random lifetimes τi, i = 1, · · · , n, by:

τi := inf{t ≥ 0 : T it ≥ Ei}, i = 1, · · · , n.

Then the random vector (τ1, · · · , τn) has the MOn(λ, t) distribution with parameters

λΘ(t) given by Eq.(A.2) with

gΘ(t) = ψ(1Θ(1), · · · ,1Θ(n), t), and

∫ t

0

gΘ(u)du <∞, ∀t ≥ 0,

where ψ is the Laplace exponent of the additive subordinator (see Eq. (6.1)) and 1Θ(i) =

1 (0) if i ∈ Θ (i /∈ Θ).

The proof is entirely similar to the proof of Theorem 1 (of the main document) by re-

placing φΘ = φ(1Θ(1), · · · ,1Θ(n)) with time-dependent ψΘ(t) = ψ(1Θ(1), · · · ,1Θ(n), t)

and integrating with respect to time. The necessary and sufficient conditions on time-

dependent intensities λ(t) also parallels Theorem 2 (of the main document).

Theorem 2. The distribution MOn(λ(t)) admits an additive subordinator construc-

tion if and only if its parameters satisfy the following condition. Let U = {u ≥ 0 :

λΘ(u) = 0} for some Θ ⊆ Υ, then λΞ(u) = 0 for all u ∈ U and for all Ξ such that

Θ ⊆ Ξ.
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The proof parallels the proof of Theorem 2 (of the main document).

Appendix B. Further Extensions

We conclude with a brief discussion of the extension of the (additive) subordina-

tor model that combines diffusive intensities with (additive) subordinators via time

changes. This more general framework starts with a vector of independent one-

dimensional non-negative diffusions, such as CIR processes. As in the standard dif-

fusion intensity framework, it then constructs hazard processes of individual obligors

as integrals of linear combinations of the diffusive intensities. It then applies a multi-

variate time change given by a multi-dimensional (additive) subordinator to the vector

of hazard processes. The resulting model combines the local diffusive behavior of

intensity models that generate diffusive dynamics of market spreads over time with

the global correlation structure of the multi-variate (additive) subordinator model

presented in this paper. Research in this direction has been initiated in [7] for one-

dimensional models and in [8] for multi-dimensional models.

Stochastic dynamics: In the previous section we have shown that by using additive

subordinators one can generalize the MO shock model to the case of time-dependent

parameters. We have also observed that our construction of the MO distribution

(both time homogeneous and time inhomogeneous) allows us to generate efficient

simulation algorithms even for the hierarchical case (see Remark 2 of the main doc-

ument). Nonetheless, the MO distribution remains a static one, which may not be

sufficiently appropriate for explaining the time-series dynamics as it is required for

certain applications, e.g., the mark to market valuation of credit default spreads where

volatility plays an important role. However, this limitation can be easily alleviated

by introducing absolutely continuous time changes in our formulation. Consider for

instance the factor model of equation (4.8),

T i = Sid,i +

C∑
c=1

Ai,cSc, ∀i = 1, . . . , n,

where the time change processes Sc, c = 1, . . . , C, are either a Lévy or Additive

subordinators, but where the idiosyncratic time change process Sid,i is specified as an

absolute continuous time change that is independent of Sc and of all Sid,j , ∀j 6= i =
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1, . . . , n. An absolute continuous time change Sid,i is a non-negative and nondecreasing

process that starts at zero and that is absolute continuous with respect to the Lebesgue

measure, i.e., Sid,it =
∫ t

0
V is ds, where V i is a nonnegative activity rate process that is

independent of V j , ∀j 6= i = 1, . . . , n. A typical example of an absolute continuous time

change is given when the activate rate process V i is specified as a Cox-Ingersoll-Ross

(CIR) process (see [3]), which uniquely and strongly solves the SDE,

dV it = κi(θi − V it ) + σi

√
V it dB

i
t, with V i0 = vi ≥ 0; κiθi > 0, σi > 0,

where θi is the long run mean, κi is the mean reversion rate, σi is the constant volatility,

and Bi is a Brownian motion, which is assumed to be independent of Bj , ∀j 6= i =

1, . . . , n. If Feller’s condition is satisfied, i.e., 2θiκi ≥ σ2
i , then the process V i remains

strictly positive when started from vi > 0. It can also be started from vi = 0, in which

case it immediately enters the interval (0,∞) and stays strictly positive for all t > 0.

In this case the boundary at zero is an entrance boundary. When the Feller condition

is not satisfied, 0 < 2κiθi < σ2
i , the process can reach zero when started from vi > 0,

and zero is an instantaneously reflecting boundary. An appealing property of the CIR

specification is that the Laplace transform is known in closed form

L(vi, t, λ) = E[e−λ
∫ t
0
V i
s ds] = E[e−λS

id,i
t ] = e−A(t,λ)−B(t,λ)vi , λ > 0,

where the functions A, B are well known solutions to the associated Riccati ODE (for

details see [3]). Moreover, paths of the random change process Sid,i can be simulated

using well known algorithms such as those found in [1], [6] and [2]. Therefore, one can

complement the MO fatal shock model by introducing stochastic dynamics via absolute

continuous time changes in order to enrich to the credit default model.

A generalization of the traditional default intensity factor model using the MO fatal

shock model: Following the setup proposed above, it is easy to see that we can further

generalize the credit model to a factor model that combines the traditional factor model

with (jump-) diffusion intensities (see, e.g., [5] and [4]) and the MO fatal shock model
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as follows,

T i = Sid,i +

J∑
j=1

αi,jU j︸ ︷︷ ︸
Trad. factor model

+

C∑
c=1

Ai,cSc︸ ︷︷ ︸
MO fatal shock

, ∀i = 1, . . . , n,

where U j , j = 1, . . . , J , are a set of absolute continuous time changes representing, for

example, macroeconomic factors, or sector/industry related factors that are common

to all or a subset of firms. Each αi,j ≥ 0 represents the contribution of the absolute

continuous time change U j to the default intensity of the ith firm. In this case, one

can see that the traditional factor model is complemented by the MO factor model,

where the latter is introduced into the credit default model in order to capture default

clustering events.
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